数列{an}的通项an=n2(cos2-sin2),其前n项和为Sn,则S30为( ) A.470 B.490 C.495 D.510 |
|
已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn表示{an}的前n项和,则使得Sn达到最大值的n是( ) A.21 B.20 C.19 D.18 |
|
设{an}是公差不为0的等差数列,a1=2且a1,a3,a6成等比数列,则{an}的前n项和Sn=( ) A. B. C. D.n2+n |
|
等差数列{an}的前n项和为Sn,已知an-1+an+1-an2=0,S2n-1=38,则n=( ) A.38 B.20 C.10 D.9 |
|
设等比数列{an}的前n项和为Sn,若=3,则=( ) A.2 B. C. D.3 |
|
等差数列{an}的前n项和为Sn,且S3=6,a3=4,则公差d等于( ) A.1 B. C.2 D.3 |
|
公差不为零的等差数列{an}的前n项和为Sn.若a4是a3与a7的等比中项,S8=32,则S10等于( ) A.18 B.24 C.60 D.90 |
|
已知等比数列{an}的公比为正数,且a3•a9=2a52,a2=1,则a1=( ) A. B. C. D.2 |
|
已知动圆过定点M(0,1),且与直线L:y=-1相切.. (1)求动圆圆心C的轨迹的方程; (2)设A、B是轨迹C上异于原点O的两个不同点,直线OA和OB的倾斜角分别 为α和β,当α,β变化且α+β=θ为定值时,证明:直线AB恒过定点,并求出该定点的坐标. |
|
定义在D上的函数,如果满足:存在常数M>0,对任意x∈D都有|f(x)|≤M成立,则称f(x)是D上的有界函数. (1)试判断函数在实数集R上,函数在上是不是有界函数?若是,请给出证明;若不是,请说出理由. (2)若已知某质点的运动距离S与时间t的关系为,要使在上每一时刻的瞬时速度的绝对值都不大于13,求实数a的取值范围. |
|