已知一个几何体是由上下两部分构成的组合体,其三视图如图,若图中圆的半径为1,等腰三角形的腰长为,则该几何体的体积为( ) A. B. C.2π D.4π |
|
若连续抛掷两次骰子得到的点数分别为m,n,则点P(m,n)在直线x+y=4上的概率是( ) A. B. C. D. |
|
设等比数列{an}的公比q=2,前n项和为Sn,若S4=1,则S8=( ) A.17 B. C.5 D. |
|
若函数f(x)=ax+b(a≠0)有一个零点是-2,则函数g(x)=bx2+ax的零点是( ) A.2,0 B.2,- C.0,- D.0, |
|
已知集合M={y|y=2x,x>0},N={x|y=lg(2x-x2)},则M∩N为( ) A.(1,2) B.(1,+∞) C.[2,+∞) D.[1,+∞) |
|
如图,在△ABC中,D、E、P、Q、M、N分别是各边的三等分点,现做投针试验,则射中阴影部分的概率是______. |
|
数列{an}的通项,其前n项和为Sn, (1)求Sn; (2),求数列{bn}的前n项和Tn. |
|
已知曲线Cn:x2-2nx+y2=0(n=1,2,…).从点P(-1,0)向曲线Cn引斜率为kn(kn>0)的切线ln,切点为Pn(xn,yn). (1)求数列{xn}与{yn}的通项公式; (2)证明:. |
|
设Sn为数列{an}的前n项和,Sn=kn2+n,n∈N*,其中k是常数. (I)求a1及an; (II)若对于任意的m∈N*,am,a2m,a4m成等比数列,求k的值. |
|
已知点(1,)是函数f(x)=ax(a>0,且a≠1)的图象上一点,等比数列{an}的前n项和为f(n)-c,数列{bn}(bn>0)的首项为c,且前n项和Sn满足Sn-Sn-1=(n≥2). (Ⅰ)求数列{an}和{bn}的通项公式; (Ⅱ)若数列{}前n项和为Tn,问满足Tn>的最小正整数n是多少? |
|