相关试题
当前位置:首页 > 高中数学试题
某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为manfen5.com 满分网,第二、第三门课程取得优秀成绩的概率分别为p,q(p>q),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为
ξ123
pmanfen5.com 满分网admanfen5.com 满分网
(Ⅰ)求该生至少有1门课程取得优秀成绩的概率;
(Ⅱ)求数学期望Eξ.
品酒师需定期接受酒味鉴别功能测试,一种通常采用的测试方法如下:拿出n瓶外观相同但品质不同的酒让其品尝,要求其按品质优劣为它们排序;经过一段时间,等其记忆淡忘之后,再让其品尝这n瓶酒,并重新按品质优劣为它们排序,这称为一轮测试.根据一轮测试中的两次排序的偏离程度的高低为其评为.
现设n=4,分别以a1,a2,a3,a4表示第一次排序时被排为1,2,3,4的四种酒在第二次排序时的序号,并令X=|1-a1|+|2-a2|+|3-a3|+|4-a4|,
则X是对两次排序的偏离程度的一种描述.
(Ⅰ)写出X的可能值集合;
(Ⅱ)假设a1,a2,a3,a4等可能地为1,2,3,4的各种排列,求X的分布列;
(Ⅲ)某品酒师在相继进行的三轮测试中,都有X≤2,
①试按(Ⅱ)中的结果,计算出现这种现象的概率(假定各轮测试相互独立);②你认为该品酒师的酒味鉴别功能如何?说明理由.
随机变量ξ的概率分布率由下图给出:manfen5.com 满分网
则随机变量ξ的均值是    
某射手射击所得环数ξ的分布列如下,已知ξ的期望Eξ=8.9,则y的值为   
ξ78910
Px0.10.3y
某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为( )
A.100
B.200
C.300
D.400
设△ABC的内角A、B、C的对边长分别为a、b、c,且3b2+3c2-3a2=4manfen5.com 满分网bc.
(Ⅰ)求sinA的值;
(Ⅱ)求manfen5.com 满分网的值.
设函数f(x)=cos(x+manfen5.com 满分网π)+2manfen5.com 满分网,x∈R.
(1)求f(x)的值域;
(2)记△ABC内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=manfen5.com 满分网,求a的值.
在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,满足manfen5.com 满分网
(Ⅰ)求角C的大小;
(Ⅱ)求sinA+sinB的最大值.
在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=manfen5.com 满分网
(I)求sinC的值;
(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.
在△ABC中,manfen5.com 满分网
(Ⅰ)证明B=C:
(Ⅱ)若cosA=-manfen5.com 满分网,求sinmanfen5.com 满分网的值.
共1028964条记录 当前(88346/102897) 首页 上一页 88341 88342 88343 88344 88345 88346 88347 88348 88349 88350 88351 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.