已知函数 (1)试判断函数f(x)的单调性; (2)设m>0,求f(x)在[m,2m]上的最大值; (3)试证明:对∀n∈N*,不等式. |
|
如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,∠ADC=60°,AF=a(a>0),M是线段EF的中点. (1)求证:AC⊥BF; (2)若二面角F-BD-A的大小为60°,求a的值; (3)令a=1,设点P为一动点,若点P从M出发,沿棱按照M→E→C的路线运动到点C,求这一过程中形成的三棱锥P-BFD的体积的最小值. |
|
若椭圆C1:的离心率等于,抛物线C2:x2=2py(p>0)的焦点在椭圆的顶点上. (1)求抛物线C2的方程; (2)求过点M(-1,0)的直线l与抛物线C2交E、F两点,又过E、F作抛物线C2的切线l1、l2,当l1⊥l2时,求直线l的方程. |
|
为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右图所示;由于不慎将部分数据丢失,但知道前4组的频数从左到右依次是等比数列{an}的前四项,后6组的频数从左到右依次是等差数列{bn}的前六项. (1)求数列{an}和{bn}的通项公式; (2)求视力不小于5.0的学生人数; (3)设,求数列{cn}的通项公式. |
|
化简f(x)=cos(π+2x)+cos(π-2x)+2(x∈R,k∈Z),并求函数f(x)的值域和最小正周期. |
|
已知圆的极坐标方程为ρ=2cosθ,则该圆的圆心到直线ρsinθ+2ρcosθ=1的距离是 . | |
如图,AB是⊙O的直径,延长AB到C,使BC=,切线BF分别交切线CD及AD的延长线于E、F,求∠F的度数. |
|
若框图所给程序运行的结果为S=90,那么判断框中应填入的关于k的判断条件是 . | |
则f(f(2))的值为 . | |
以点A(0,5)为圆心、双曲线的渐近线为切线的圆的标准方程是 . | |