如图,AB是⊙O的直径,AD是⊙O的切线,点C在⊙O上,BC∥OD,AB=2,OD=3,则BC的长为______. |
|
已知双曲线的中心在原点,焦点在x轴上,离心率为2,过其右焦点且倾斜角为45°的直线被双曲线截得的弦MN的长为6. (Ⅰ)求此双曲线的方程; (Ⅱ)若直线l:y=kx+m与该双曲线交于两个不同点A、B,且以线段AB为直径的圆过原点,求定点Q(0,-1)到直线l的距离d的最大值,并求此时直线l的方程. |
|
已知等差数列{an}中,a1=-1,前12项和S12=186. (Ⅰ)求数列{an}的通项公式; (Ⅱ)若数列{bn}满足,记数列{bn}的前n项和为Tn,若不等式Tn<m对所有n∈N*恒成立,求实数m的取值范围. |
|
如图,已知正三棱柱ABC-A1B1C1的底面边长是2,D是侧棱CC1的中点,直线AD与侧面BB1C1C所成的角为45°. (Ⅰ)求此正三棱柱的侧棱长; (Ⅱ)求二面角A-BD-C的大小; (Ⅲ)求点C到平面ABD的距离. |
|
某工厂在试验阶段大量生产一种零件.这种零件有A、B两项技术指标需要检测,设各项技术指标达标与否互不影响.若A项技术指标达标的概率为,有且仅有一项技术指标达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品. (Ⅰ)求一个零件经过检测为合格品的概率; (Ⅱ)任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率; (Ⅲ)任意依次抽取该种零件4个,设ξ表示其中合格品的个数,求Eξ与Dξ. |
|
已知向量,,且•. (Ⅰ)求tanA的值; (Ⅱ)求函数的值域. |
|
某中学为了培养学生的社会实践能力,今年“五•一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图.(收入取整数,单位:元) 请你根据以上提供的信息,解答下列问题: (1)补全频数分布表和频数分布直方图; (2)这50个家庭收入的中位数落在 小组; (3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少? |
|
函数,则= ,若,则实数a的取值范围是 . | |
如图,△ABC内接于⊙O,BD切⊙O于点B,AB=AC,若∠CBD=40°,则∠ABC等于 . |
|
已知(2x-)9展开式的第7项为,则(x+x2+x3+…+xn)= . | |