如图所示,固定在同一水平面内的两根光滑平行长直金属导轨的间距为d,其右端接有阻值为R的电阻,整个装置处在竖直向上磁感应强度大小为B的匀强磁场中。一质量为m的导体杆ab垂直于导轨放置,且与两导轨保持良好接触。现杆受到水平向左、垂直于杆的恒力F作用,从静止开始沿导轨运动,当运动距离L时,速度恰好达到最大。杆的质量分布均匀,接入电路的电阻为r,导轨电阻不计,运动过程中杆始终与导轨保持垂直,重力加速度大小为g。对于此过程,下列说法中正确的是( ) A.杆的速度最大值为 B.流过电阻R的电量为 C.恒力F做的功与安培力做的功之和等于杆动能的变化量 D.安培力做功的绝对值等于回路中产生的焦耳热
|
|
某同学设计了一个在光照或温度升高时排气扇都能启动的自动控制装置,该同学用到的两个传感器可能是( ) A.力传感器 B.光电传感器 C.温度传感器 D.电容式传感器
|
|
如图所示的电路中,A和B是两个完全相同的小灯泡,L是一个自感系数很大、直流电阻很小的电感线圈。当S闭合与断开的瞬时,对A、B的发光情况判断正确的是( ) A.S闭合的瞬时,A、B同时发光,且一样亮 B.S闭合的瞬时,B发光,A逐渐变亮 C.S闭合足够长时间后再断开,A、B立即熄灭 D.S闭合足够长时间后再断开,B闪亮一下再熄灭
|
|
如图甲所示的电路中,输入电压u随时间t变化规律如图乙所示。电路中电阻的阻值R=484Ω,C为电容器,L为直流电阻不计的自感线圈,电流表为理想电表,开关S断开。下列说法正确的是( ) A.电阻R消耗的功率为100W B.电流表的示数为0.46A C.S闭合后,电流表的示数增大 D.S闭合后,增大输入电压的频率,电流表的示数一定增大
|
|
现代汽车在制动时,有一种ABS系统,它能阻止制动时车轮抱死变为纯滑动。这种滑动不但制动效果不好,而且易使车辆失去控制。为此需要一种测定车轮是否还在转动的装置。如果检测出车辆不再转动,就会自动放松制动机构,让轮子仍保持缓慢转动状态。这种检测装置称为电磁脉冲传感器,如图甲,B是一根永久磁铁,外面绕有线圈,它的左端靠近一个铁质齿轮,齿轮与转动的车轮是同步的。图乙是车轮转动时线圈输出电流随时间变化的图象。若车轮转速减慢了,则图乙所示的电流( ) A.周期减小 B.周期增大 C.峰值不变 D.峰值变大
|
|
图甲是一台小型发电机的构造示意图。线圈逆时针匀速转动,产生的正弦式交变电动势e随时间t变化的图像如图乙所示。发电机线圈的匝数为100匝,电阻为3Ω,外接灯泡的电阻为12Ω,电压表和电流表都为理想电表。则( ) A.电压表的示数为18V B.电流表的示数为1.7A C.穿过线圈磁通量的最大值为8.1×10-4Wb D.若仅将线圈的转速提高一倍,则线圈电动势的表达式为
|
|
规定垂直纸面向里的方向为磁场的正方向,顺时针方向为电流的正方向。在处于磁场中的纸面内放置一个金属圆环,如图甲所示。现令磁感应强度B按图乙随时间t变化,则能正确表示对应时间内金属圆环中电流i随时间t变化情况的i-t图像是( )
|
|
如图所示,在光滑的水平地面卜方,有两个磁感应强度大小均为B,方向向反的水平匀强磁场,PQ为两个磁场的边界,磁场范围足够大。一个半径为a,质量为m,电阻为R的金属圆环垂直磁场方向,从圆环刚好与边界线PQ相切时开始,在外力作用下以速度v向右匀速运动,到圆环运动到直径刚好与边界线PQ重合时,下列说法正确的是( ) A.此时圆环中的电动势大小为2Bav B.此时圆环中的电流方向为逆时针方向 C.此过程中圆环中的电动势均匀增大 D.此过程中通过圆环截面的电量为
|
|
在地球的赤道上置一矩形线圈,线圈平面与赤道平面重合,线圈的上、下边水平,此时穿过线圈平面的磁通量大小为Φ。现使线圈绕其竖直轴线旋转180°,则此过程中穿过线圈的磁通量的变化量的大小为( ) A.0 B.Φ C.Φ D.2Φ
|
|
如图所示,光滑的绝缘平台水平固定,在平台右下方有相互平行的两条边界MN与PQ,其竖直距离为h=1.7m,两边界间存在匀强电场和磁感应强度为B=0.9T且方向垂直纸面向外的匀强磁场,MN过平台右端并与水平方向呈θ=37°.在平台左端放一个可视为质点的A球,其质量为mA=0.17kg,电量为q=+0.1C,现给A球不同的水平速度,使其飞出平台后恰好能做匀速圆周运动.g取10m/s2. (1)求电场强度的大小和方向; (2)要使A球在MNPQ区域内的运动时间保持不变,则A球的速度应满足的条件?(A球飞出MNPQ区域后不再返回) (3)在平台右端再放一个可视为质点且不带电的绝缘B球,A球以vA0=3m/s的速度水平向右运动,与B球碰后两球均能垂直PQ边界飞出,则B球的质量为多少?
|
|