矩形线圈的匝数为50匝,在匀强磁场中绕垂直于磁场的轴匀速转动时,穿过线圈的磁通量随时间的变化规律如图所示,下列结论正确的是(  )

A. t=0.1st=0.3s,电动势最大

B. t=0.2st=0.4s,电动势改变方向

C. 电动势的最大值是157V

D. t=0.4 s时,磁通量变化率最大,其值为3.14Wb/s

 

如图所示是一种弹射装置,弹丸的质量为 ,底座的质量为 ,开始时均处于静止状态。当弹丸以速度(相对于地面)发射出去后,底座的速度大小为,在发射弹丸过程中,底座受地面的(   )

A. 摩擦力的冲量为零    B. 摩擦力的冲量为,方向向右

C. 摩擦力的冲量为,方向向右    D. 摩擦力的冲量为,方向向左

 

如图所示,小车AB静止于水平面上,A端固定一个轻质弹簧,B端粘有橡皮泥.小车AB质量为 M,质量为m的木块C放在小车上,CB距离为L用细线将木块连接于小车的A端并使弹簧压缩.开始时小车AB与木块C都处于静止状态,现烧断细线,弹簧被释放,使木块离开弹簧向B端滑去,并跟B端橡皮泥粘在一起.所有摩擦均不计,对整个过程,以下说法正确的是   (   )

A. 整个系统机械能守恒

B. 整个系统机械能不守恒,动量也不守恒

C. 当木块的速度最大时,小车的速度也最大

D. 最终整个系统向左匀速运动

 

图为氢原子的能级图,已知可见光的光子的能量范围为1.62~3.11 eV,锌板的电子逸出功为3.34 eV,那么对氢原子在能级跃迁的过程中辐射或吸收光子的特征认识正确的是(     )

A. 用氢原子从高能级向基态跃迁时发射的光照射锌板,一定不能产生光电效应现象

B. 用能量为11.0 eV的自由电子轰击,可使处于基态的氢原子跃迁到激发态

C. 处于n=2能级的氢原子能吸收任意频率的紫外线

D. 处于n=3能级的氢原子可以吸收任意频率的紫外线,并且使氢原子电离

 

如图所示,纵坐标表示两个分子间引力、斥力的大小,横坐标表示两个分子的距离,图中两条曲线分别表示两分子间分子引力、斥力的大小随分子间距离的变化关系,e为两曲线的交点,则下列说法正确的是 

Aab为斥力曲线,cd为引力曲线,e点横坐标的数量级为10-10m

Bab为引力曲线,cd为斥力曲线,e点横坐标的数量级为10-10m

C若两个分子间距离大于e点的横坐标,则分子间作用力表现为斥力

D若两个分子间距离越来越大,则分子势能亦越大

 

如图,用导线将验电器与洁净锌板连接,触摸锌板使验电器指示归零,用紫外线照射锌板,验电器指针发生明显偏转。接着用毛皮摩擦过的橡胶棒接触锌板,发现验电器指针张角将如何变化(   )

A. 减小    B. 增大    C. 不变    D. 无法确定

 

下列说法中正确的是 (      )

A. 用打气筒的活塞压缩气体很费力,说明分子间有斥力

B. 将碳素墨水滴入清水中,观察到的布朗运动是碳分子无规则运动的反映

C. 布朗运动的剧烈程度与温度有关,所以布朗运动也叫分子热运动

D. 用油膜法测出油分子直径后,计算阿伏伽德罗常数时,还要知道油滴的摩尔质量和密度

 

下列说法不正确的是(  )

A. 经过6α衰变和4β衰变后成为原子核

B. 太阳内部的核反应是核聚变

C. 原子核的结合能越大,原子核越稳定

D. 131的半衰期约为8天,若某药物含有质量为m的碘131,经过24天后,该药物中碘131的含量大约还有

 

在人类对微观世界进行探索的过程中,科学实验起到了非常重要的作用。下列说法符合历史事实的是(     )

A. 查德威克第一次实现了原子核的人工转变并发现了质子

B. 贝克勒尔通过对天然放射现象的研究,发现了原子中存在原子核

C. 卢瑟福通过α粒子散射实验证实了在原子核内部存在质子

D. 汤姆逊通过阴极射线在电场和磁场中偏转的实验,发现了阴极射线是由带负电的粒子组成的,并求出了该粒子的比荷

 

如图所示,OBCD为半圆柱体玻璃的横截面,OD为直径,一束由红光和紫光组成的复色光沿AO方向从真空斜射入玻璃,B,C点为两单色光的射出点(设光线在B,C处未发生全反射).已知从B点射出的单色光由OB的传播时间为t.

①若OB,OC两束单色光在真空中的波长分别为λB,λC,试比较λB,λC的大小关系;

②求从C点射出的单色光由OC的传播时间tC.

 

沿x轴正向传播的一列简谐横波在t=0时刻的波形如图所示,M为介质中的一个质点,该波的传播速度为40 m/s,则t=0.025s时,下列判断正确的是        .

A. 质点M对平衡位置的位移一定为正值

B. 质点M的速度方向与对平衡位置的位移方向相同

C. 质点M的运动方向沿x轴正方向

D. 质点M的加速度方向与速度方向一定相同

E. 质点M的加速度方向与对平衡位置的位移方向相反

 

如图所示,A、B两个气缸中装有压强均为1 atm(标准大气压)、温度均为27的空气,中间用细管连接,细管容积不计,管中有一绝热活塞(不计摩擦,可自由移动)。开始时气缸A左端的活塞距离其右端底部为L。现保持气缸A中的气体温度不变,将活塞向右缓慢推进L/4,若要使细管中的绝热活塞仍停在原位置,则气缸B中的气体温度应升高到多少摄氏度?

 

 

以下说法正确的是(  )

A. 玻璃管的裂口烧熔后会变钝是表面张力的作用引起的

B. 热量可以由低温物体传递给高温物体

C. 物体的体积增大,分子势能不一定增大

D. 一切自然过程总是沿着分子热运动的无序性减小的方向进行

E. 只要知道某种物质的摩尔体积和分子体积,就可以计算出阿伏加德罗常数

 

如图所示,质量为m3=2kg的滑道静止在光滑的水平面上,滑道的AB部分是半径为R=0.3m的四分之一圆弧,圆弧底部与滑道水平部分相切,滑道水平部分右端固定一个轻弹簧.滑道除CD部分粗糙外其他部分均光滑.质量为m2=3kg的物体2(可视为质点)放在滑道的B点,现让质量为m1=1kg的物体1(可视为质点)自A点由静止释放.两物体在滑道上的C点相碰后粘为一体(g=10m/s2).求:

(1)物体1从释放到与物体2相碰的过程中,滑道向左运动的距离;

(2)若CD=0.2m,两物体与滑道的CD部分的动摩擦因数都为μ=0.15,求在整个运动过程中,弹簧具有的最大弹性势能;

(3)物体1、2最终停在何处。

 

如图所示,质量为的物体静置于粗糙水平面上,在水平拉力作用下物体开始向右做匀加速运动,物体和水平面间的动摩擦因数.重力加速度,不计空气阻力.

(1)求物体在内运动的位移;

(2)若在末时撤去水平拉力F,求末时的摩擦力的功率大小.

 

如图甲所示,一倾角为θ=37°的传送带以恒定速度运行。现将一质量m=1kg的小物体抛上传送带,物体相对地面的速度随时间变化的关系如图乙所示,取沿传送带向上为正方向,g=10m/s2,sin37°=0.6,cos37°=0.8。求:

(1)0~8s内物体位移的大小。

(2)物体与传送带间的动摩擦因数。

(3)0~8s内物体机械能增量及因与传送带摩擦产生的热量Q

 

如图所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系.

(1)实验中,下列说法是正确的有:__________

A.斜槽末端的切线要水平,使两球发生对心碰撞

B.同一实验,在重复操作寻找落点时,释放小球的位置可以不同

C.实验中不需要测量时间,也不需要测量桌面的高度

D.实验中需要测量桌面的高度H

E.入射小球m1的质量需要大于被碰小球m2的质量

(2)图中O点是小球抛出点在地面上的垂直投影.实验时,先让入射球m1多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP. 然后把被碰小球m2静置于轨道的水平部分,再将入射球m1从斜轨S位置静止释放,与小球m2相撞,并多次重复。分别找到m1m2相碰后平均落地点的位置MN ,用刻度尺测量出平抛射程OMON,用天平测量出两个小球的质量m1m2 ,若两球相碰前后的动量守恒,其表达式可表示为:________________________

 

如图所示,在以直角坐标系xOy的坐标原点O为圆心、半径为r的圆形区域内,存在磁感应强度大小为B、方向垂直xOy所在平面指向纸面里的匀强磁场。一带电粒子由磁场边界与x轴的交点A处,以速度v0沿x轴负方向射入磁场,粒子恰好能从磁场边界与y轴的交点C处,沿y轴正方向飞出磁场之后经过D点,D点的坐标为(0,2r),不计带电粒子所受重力。若磁场区域以A点为轴在xoy平面内顺时针旋转45°后,带电粒子仍以速度v0沿x轴负方向射入磁场,飞出磁场后经过y=2r直线时,以下说法正确的是:

A. 带电粒子仍将垂直经过y=2r的这条直线

B. 带电粒子将与y=2r的直线成45︒角经过这条直线

C. 经过y=2r直线时距D的距离为

D. 经过y=2r直线时距D的距离为

 

已知地球自转周期为T0,有一颗与同步卫星在同一轨道平面的低轨道卫星,自西向东绕地球运行,其运行半径为同步轨道半径的四分之一,该卫星两次在同一城市的正上方出现的时间间隔可能是

A.     B.     C.     D.

 

粒子回旋加速器的工作原理如图所示,置于真空中的D型金属盒的半径为R,两金属盒间的狭缝很小,磁感应强度为B的匀强磁场与金属盒盒面垂直,高频率交流电的频率为f,加速器的电压为U,若中心粒子源处产生的质子质量为m,电荷量为+e,在加速器中被加速。不考虑相对论效应,则下列说法正确是

A. 质子被加速后的最大速度不能超过Rf

B. 加速的质子获得的最大动能随加速电场U增大而增大

C. 质子第二次和第一次经过D型盒间狭缝后轨道半径之比为

D. 不改变磁感应强度B和交流电的频率f,该加速器也可加速粒子

 

如图(甲),轻杆一端与一小球相连,另一端连在光滑固定轴上.现使小球在竖直平面内做圆周运动,到达某一位置开始计时,取水平向右为正方向,小球的水平分速度vx随时间t的变化关系如图(乙)所示.不计空气阻力,下列说法正确的是

A. t1时刻小球通过最低点

B. 图(乙)中S1面积的数值为0.8m

C. 图(乙)中S1S2的面积不相等

D. 图线第一次与横轴的交点对应小球的速度为4m/s

 

某一卫星在赤道上空飞行的,轨道半径为r(小于同步卫星的轨道半径),飞行方向与地球的自转方向相同。设地球的自转角速度为ω0,地球半径为R,地球表面重力加速度为g,在某时刻该卫星通过赤道上某建筑物的上方,则到它下次通过该建筑上方所需时间为

A.     B.     C.     D.

 

公园里的“飞天秋千”游戏开始前,座椅由钢丝绳竖直悬吊在半空.秋千匀速转动时,绳与竖直方向成某一角度θ,其简化模型如图所示.若保持运动周期不变,要使夹角θ变大,可将

A. 钢丝绳变长    B. 钢丝绳变短    C. 座椅质量增大    D. 座椅质量减小

 

如图甲、乙、丙所示,三个完全相同的半圆形光滑绝缘轨道置于竖直平面内,左右两端点等高,其中图乙轨道处在垂直纸面向外的匀强磁场中,图丙轨道处在竖直向下的匀强电场中,三个相同的带正电小球同时从轨道左端最高点处由静止释放.则三个带电小球通过圆轨道最低点时

A. 速度相同

B. 均能到达轨道右端最高点处

C. 对轨道的压力相同

D. 所用时间相同

 

如图甲所示,用一轻质绳拴着一质量为m的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为F,小球在最高点的速度大小为v,其Fv2图象如图乙所示,则

A. 轻质绳长为b/a

B. 当地的重力加速度为a/m

C. v2c时,轻质绳的拉力大小为

D. 只要v2b,小球在最低点和最高点时绳的拉力差均为6a

 

如图所示,粗细均匀、上端封闭的三通细玻璃管中用水银与活塞封闭了两段温度相同、长度分别为LA= 25cmLB=30cm的理想气体AB,竖直管中两段水银柱长均为h=15cm,水平管中水银柱足够长,右端和大气相通,大气压强p0=75cmHg.现缓慢抽动玻璃管下端的活塞,使AB两部分气体体积相同,求活塞下移的距离.

 

如图,一质量和厚度均可忽略的活塞将气体密封在足够高的导热气缸内,系统静止时缸内的气体温度、压强分别与外界温度T0、外界压强p0相等,活塞与气缸底部高度差为h.现对气缸底部缓慢加热,活塞缓慢上升.已知气体吸收的热量Q与温度差ΔT的关系为QkΔT(其中k为常量,且k>0),活塞的面积为S,不计一切摩擦,求:

(1) 当活塞在缸内上升到离缸底高度为3h时缸内气体的温度T

(2) 在活塞从离缸底高度为h上升到高度为3h的过程中,缸内气体增加的内能ΔU.

 

如图所示,导热性能良好的气缸的开口向下,内有体积为V0的理想气体,外界大气压强为p0,环境温度为T0,轻活塞的横截面积为S,轻活塞与气缸之间的摩擦不计.现在活塞下面挂一个质量为m的小桶,活塞缓慢下移,并最终处于某一位置静止不动.已知重力加速度为g.

求挂上小桶后系统稳定时,气缸内气体的体积V.

拿掉小桶后,若要保持气缸内气体的体积V不变,环境温度需要升高到多少?气缸吸热还是放热?

 

如图所示,长L=2m的均匀细管竖直放置,下端封闭,管内封有一定量的气体。现用一段长h=25cm的水银柱从管口注入将气柱封闭,该过程中环境温度T0=360K不变且不漏气。现将玻璃管移入恒温箱中倒置,稳定后水银柱下端与管口平齐(没有水银漏出)。已知大气压强为p0=75cmHg。求注水银后气柱的长度和恒温箱的温度各为多少?

 

要测绘一个标有“3 V 0.6 W”小灯泡的伏安特性曲线,小灯泡两端的电压需要由零逐渐增加到3 V,并便于操作.已选用的器材有:

电池组(电动势为4.5 V,内阻约1 Ω)

电流表(量程为0250 mA,内阻约5 Ω)

电压表(量程为03 V,内阻约3 kΩ)

电键一个、导线若干.

1实验中所用的滑动变阻器应选下列中的________(填字母代号)

A.滑动变阻器(最大阻值20 Ω,额定电流1 A)

B.滑动变阻器(最大阻值1750 Ω,额定电流0.3 A)

2实验的电路图应选用下列的图________(填字母代号)

3实验得到小灯泡的伏安特性曲线如图所示.如果将这个小灯泡接到电动势为1.5 V,内阻为5 Ω的电源两端,小灯泡消耗的功率是________ W.(保留一位有效数字)

 

Copyright @ 2014 满分5 满分网 ManFen5.COM. All Rights Reserved.