如图,在平面直角坐标系中,等腰Rt△OAB斜边OB在y轴上,且OB=4. (1)画出△OAB绕原点O顺时针旋转90°后得到的三角形; (2)求线段OB在上述旋转过程中所扫过部分图形的面积(即旋转前后OB与点B轨迹所围成的封闭图形的面积). |
|
如图,△ABC与△ADE都是等腰直角三角形,∠ACB和∠E都是直角,点C在AD上,把△ABC绕点A按顺时针方向旋转n度后恰好与△ADE重合. (1)请直接写出n的值; (2)若BC=,试求线段BC在上述旋转过程中所扫过部分的面积. |
|
如图,已知菱形ABCD的边长为1.5cm,B,C两点在扇形AEF的上,求的长度及扇形ABC的面积. |
|
如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=6. (1)求⊙O的半径; (2)求图中阴影部分的面积. |
|
如图,已知在⊙O中,AB=4,AC是⊙O的直径,AC⊥BD于F,∠A=30度. (1)求图中阴影部分的面积; (2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径. |
|
如图,△ABC内接于⊙O,且∠B=60°.过点C作圆的切线l与直径AD的延长线交于点E,AF⊥l,垂足为F,CG⊥AD,垂足为G. (1)求证:△ACF≌△ACG; (2)若AF=4,求图中阴影部分的面积. |
|
如图,在Rt△ABC中,∠C=90°,点E在斜边AB上,以AE为直径的⊙O与BC相切于点D. (1)求证:AD平分∠BAC. (2)若AC=3,AE=4. ①求AD的值;②求图中阴影部分的面积. |
|
如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB. (1)判断直线CD与⊙O的位置关系,并说明理由; (2)若⊙O的半径为1,求图中阴影部分的面积(结果保留π) |
|
如图,已知:⊙O的直径AB与弦AC的夹角∠A=30°,过点C作⊙O的切线交AB的延长线于点P. (1)求证:AC=CP; (2)若PC=6,求图中阴影部分的面积(结果精确到0.1). (参考数据:,π=3.14) |
|
阅读下列材料,然后解答问题. 经过正四边形(即正方形)各顶点的圆叫作这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫作这个圆的内接正四边形. 如图,已知正四边形ABCD的外接圆⊙O,⊙O的面积为S1,正四边形ABCD的面积为S2,以圆心O为顶点作∠MON,使∠MON=90°,将∠MON绕点O旋转,OM、ON分别与⊙O相交于点E、F,分别与正四边形ABCD的边相交于点G、H.设由OE、OF、及正四边形ABCD的边围成的图形(图中的阴影部分)的面积为S.① (1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:S=______(用含S1、S2的代数式表示); (2)当OM⊥AB时(如图②),点G为垂足,则(1)中的结论仍然成立吗?请说明理由; (3)当∠MON旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由. |
|