每个小方格都是边长为1个单位长度的小正方形,菱形OABC在平面直角坐标系中的位置如图. (1)将菱形OABC先向右平移4个单位,再向上平移2个单位,得到菱形OA1B1C1,请画出菱形OA1B1C1,并直接写出点B1的坐标; (2)将菱形OABC绕原点O顺时针旋转90°,得到菱形OA2B2C2,请画出菱形OA2B2C2,并求出点B旋转到B2的路径长. |
|
如图所示,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点,△ABC的三个顶点A,B,C都在格点上. (1)画出△ABC绕点A逆时针旋转90°后得到的△AB1C1; (2)求旋转过程中动点B所经过的路径长(结果保留π). |
|
如图,是某几何体的平面展开图,求图中小圆的半径. |
|
如图,⊙O1、⊙O2、⊙O3、⊙O4的半径都为1,其中⊙O1和⊙O2外切,⊙O2、⊙O3,⊙O4两两外切,并且O1、O2、O3、三点在同一直线上. (1)请直接写出O2O4的长; (2)若⊙O1沿图中箭头所示的方向在⊙O2的圆周上滚动,最后⊙O1滚动到⊙O4的位置上,试求在上述滚动过程中圆心O1移动的距离.(精确到0.01) |
|
如图,CA和CB都是⊙O的切线,切点分别为A、B,连接OC交弦AB于点D已知⊙O的半径为4,弦AB= (1)求证:OC垂直平分AB; (2)求劣弧的长. |
|
已知:AB是⊙O的直径,点C是⊙O外的一点,点E是AC上一点,AB=2. (1)如图1,点D是BC的中点,当DE也AC满足什么关系时,DE是⊙O的切线?请说明理由. (2)如图2,AC是⊙O的切线,点E是AC的中点DE∥AB.①求的值;②求阴影部分的面积. |
|
如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°. (1)试判断直线CD与⊙O的位置关系,并说明理由; (2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号) |
|
如图,AB是⊙O的直径,∠BAC=45°,AB=BC. (1)求证:BC是⊙O的切线; (2)设阴影部分的面积分别为,a,b,⊙O的面积为S,请直接写出S与a,b的关系式. (答案不唯一) |
|
已知:如图,在锐角∠MAN的边AN上取一点B,以AB为直径的半圆O交AM于C,交∠MAN的角平分线于E,过点E作ED⊥AM,垂足为D,反向延长ED交AN于F. (1)猜想ED与⊙O的位置关系,并说明理由; (2)若cos∠MAN=,AE=,求阴影部分的面积. |
|
如图,△OAB中,OA=OB,∠A=30°,⊙O经过AB的中点E分别交OA、OB于C、D两点,连接CD. (1)求证:AB是⊙O的切线. (2)求证:CD∥AB. (3)若CD=4,求扇形OCED的面积. |
|