一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD是平行的,且水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,请你作出该小朋友将圆盘从A点滚动到D点其圆心所经过的路线的示意图,并求出此路线的长度. |
|
如图,ABCD是边长为1的正方形,其中、、的圆心依次是A、B、C. (1)求点D沿三条圆弧运动到点G所经过的路线长; (2)判断直线GB与DF的位置关系,并说明理由. |
|
如图,AB是⊙O的直径,弦BC=5,∠BOC=50°,OE⊥AC,垂足为E. (1)求OE的长; (2)求劣弧AC的长.(结果精确到0.1) |
|
如图,已知BC是⊙O的直径,P是⊙O上一点,A是的中点,AD⊥BC于点D,BP与AD相交于点E,若∠ACB=36°,BC=10. (1)求的长; (2)求证:AE=BE. |
|
如图,扇形OBC是圆锥的侧面展开图,圆锥的母线OB=l,底面圆的半径HB=r. (1)当l=2r时,求∠BOC的度数; (2)当l=3r,l=4r时,分别求∠BOC的度数;(直接写出结果) (3)当l=nr(n为大于1的整数)事,猜想∠BOC的度数(直接写出结果). |
|
(1)如图,在等腰梯形ABCD中,AD∥BC,M是AD的中点, 求证:MB=MC. (2)如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2). ①画出△OAB向下平移3个单位后的△O1A1B1; ②画出△OAB绕点O逆时针旋转90°后的△OA2B2,并求点A旋转到点A2所经过的路线长(结果保留π). |
|
如图,正方形网格中,△ABC为格点三角形(顶点都是格点),将△ABC绕点A按逆时针方向旋转90°得到△AB1C1. (1)在正方形网格中,作出△AB1C1; (2)设网格小正方形的边长为1,求旋转过程中动点B所经过的路径长. |
|
已知:如图,AB是⊙O的切线,切点为A,OB交⊙O于C且C为OB中点,过C点的弦CD使∠ACD=45°,的长为,求弦AD、AC的长. |
|
如图,在正三角形网格中,每一个小三角形都是边长为1的正三角形,解答下列问题: (1)网格中每个小三角形的面积为______; (2)将顶点在格点上的四边形ABOC绕点O顺时针旋转120°两次,画出所得到的两个图形,并写出点A所经过的路线为______.(结果保留π). |
|
在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上.(每个小方格的顶点叫格点) (1)画出△ABC向下平移3个单位后的△A1B1C1; (2)画出△ABC绕点O顺时针旋转90°后的△A2B2C2,并求点A旋转到A2所经过的路线长. |
|