已知在直角坐标系中,以点A(0,3)为圆心,以3为半径作⊙A,则直线y=kx+2(k≠0)与⊙A的位置关系是( ) A.相切 B.相交 C.相离 D.与k值有关 |
|
在100张奖劵中,有4张有奖.某人从中任抽一张,则他中奖的概率是( ) A. B. C. D. |
|
如果代数式有意义,那么,直角坐标系中点P(m,n)的位置在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
|
关于x的一元二次方程(m-1)x2-2mx+m=0有两个实数根,那么m的取值范围是( ) A.m>0 B.m≥0 C.m>0且m≠1 D.m≥0,且m≠1 |
|
计算3+的结果是( ) A.9 B.6 C.9 D.6 |
|
在直角坐标平面中,O为坐标原点,二次函数y=-x2+(k-1)x+4的图象与y轴交于点A,与x轴的负半轴交于点B,且S△OAB=6. (1)求点A与点B的坐标; (2)求此二次函数的解析式; (3)如果点P在x轴上,且△ABP是等腰三角形,求点P的坐标. |
|
如图,AB是△ABC的外接圆⊙O的直径,D是⊙O上的一点,DE⊥AB于点E,且DE的延长线分别交AC、⊙O、BC的延长线于F、M、G. (1)求证:AE•BE=EF•EG; (2)连接BD,若BD⊥BC,且EF=MF=2,求AE和MG的长. |
|
王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=-x2+x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m. (1)请写出抛物线的开口方向,顶点坐标,对称轴. (2)请求出球飞行的最大水平距离. (3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式. |
|
如图,等腰三角形ABC中,若∠A=∠B=∠DPE, (1)求证:△APD∽△BEP; (2)若AP=1,PB=2,BE=,试求出AD的长. |
|
如图,点A、B、C是⊙O上的三点,AB∥OC. (1)求证:AC平分∠OAB. (2)过点O作OE⊥AB于点E,交AC于点P.若AB=2,∠AOE=30°,求PE的长. |
|