如图,△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长. 小萍同学灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题. 请按照小萍的思路,探究并解答下列问题: (1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,证明四边形AEGF是正方形; (2)设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.
|
|
如图,已知一次函数y1=x+m(m为常数)的图象与反比例函数(k为常数,k≠0)的图象相交点A(1,3). (1)求这两个函数的解析式及其图象的另一交点B的坐标; (2)观察图象,写出使函数值y1≥y2的自变量x的取值范围.
|
|
如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点,求证: (1)△ACE≌△BCD; (2)AD2+DB2=DE2.
|
|
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6 000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
|
|
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
|
|
如图,已知在△ABC中,∠BAC=90°,AD⊥BC于D,CE平分∠ACB,交AD于G,EF⊥BC于F,求证:四边形AEFG为菱形.
|
|
如图,已知正方形ABCD,点E是AB上的一点,连接CE,以CE为一边,在CE的上方作正方形CEFG,连接DG. 求证:△CBE≌△CDG.
|
|
画右边几何体的三种视图(注意符合三视图原则)
|
|
如图,已知矩形ABCD,将△BCD沿对角线BD折叠,记点C的对应点为C′,若∠ADC′=20°,则∠BDC的度数为 度.
|
|