如图1,在平面直角坐标系中,O为坐标原点,P是反比例函数y=(x>0)图象上任意一点,以P为圆心,PO为半径的圆与坐标轴分别交于点A、B. (1)求证:线段AB为⊙P的直径; (2)求△AOB的面积; (3)如图2,Q是反比例函数y=(x>0)图象上异于点P的另一点,以Q为圆心,QO为半径画圆与坐标轴分别交于点C、D. 求证:DO•OC=BO•OA. |
|
阅读材料: 若a,b都是非负实数,则a+b≥.当且仅当a=b时,“=”成立. 证明:∵()2≥0,∴a-+b≥0. ∴a+b≥.当且仅当a=b时,“=”成立. 举例应用: 已知x>0,求函数y=2x+的最小值. 【解析】 y=2x+≥=4.当且仅当2x=,即x=1时,“=”成立. 当x=1时,函数取得最小值,y最小=4. 问题解决: 汽车的经济时速是指汽车最省油的行驶速度.某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油(+)升.若该汽车以每小时x公里的速度匀速行驶,1小时的耗油量为y升. (1)求y关于x的函数关系式(写出自变量x的取值范围); (2)求该汽车的经济时速及经济时速的百公里耗油量(结果保留小数点后一位). |
|
如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE. (1)求证:AF=BE; (2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP与NQ是否相等?并说明理由. |
|
人教版教科书对分式方程验根的归纳如下: “解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.” 请你根据对这段话的理解,解决下面问题: 已知关于x的方程-=0无解,方程x2+kx+6=0的一个根是m. (1)求m和k的值; (2)求方程x2+kx+6=0的另一个根. |
|
钓鱼岛及其附属岛屿是中国固有领土(如图1),A、B、C分别是钓鱼岛、南小岛、黄尾屿上的点(如图2),点C在点A的北偏东47°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为5.5km;同时,点B在点C的南偏西36°方向.若一艘中国渔船以30km/h的速度从点A驶向点C捕鱼,需要多长时间到达(结果保留小数点后两位)?(参考数据:sin54°≈0.81,cos54°≈0.59,tan47°≈1.07,tan36°≈0.73,tan11°≈0.19) |
|
以“光盘”为主题的公益活动越来越受到社会的关注.某校为培养学生勤俭节约的习惯,随机抽查了部分学生(态度分为:赞成、无所谓、反对),并将抽查结果绘制成图1和图2(统计图不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共抽查了多少名学生? (2)将图1补充完整; (3)根据抽样调查结果,请你估计该校3000名学生中有多少名学生持反对态度? |
|
计算:(2-)2012•(2+)2013-2-(). |
|
在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指从塔的顶层到底层).请你算出塔的顶层有 盏灯. | |
三棱柱的三视图如图所示,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为 cm. |
|
甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是 . | |