直线y=x+3与y轴的交点坐标是( ) A.(0,3) B.(0,1) C.(3,0) D.(1,0) |
|
下列四个图中,是三棱锥的表面展开图的是( ) A. B. C. D. |
|
下列实数中,最小的数是( ) A.0 B.-1 C.-π D. |
|
如图所示,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A(-2,0),B(-1,-3). (1)求抛物线的解析式; (2)点M为y轴上任意一点,当点M到A,B两点的距离之和为最小时,求此时点M的坐标; (3)在第(2)问的结论下,抛物线上的点P使S△PAD=4S△ABM成立,求点P的坐标. |
|
如图,在Rt△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC于E点,连接BE. (1)若BE是△DEC的外接圆⊙O的切线,求∠C的大小; (2)当AB=1,BC=2时,求△DEC外接圆的半径. |
|
如图,等腰梯形ABCD放置在平面坐标系中,已知A(-2,0)、B(6,0)、D(0,3),反比例函数的图象经过点C. (1)求点C的坐标和反比例函数的解析式; (2)将等腰梯形ABCD向上平移2个单位后,问点B是否落在双曲线上? |
|
去年夏季山洪暴发,几所学校被山体滑坡推倒教学楼,为防止滑坡,经过地质人员勘测,当坡角不超过45°时,可以确保山体不滑坡.某小学紧挨一座山坡,如图所示,已知AF∥BC,斜坡AB长30米,坡角∠ABC=60°.改造后斜坡BE与地面成45°角,求AE至少是多少米?(精确到0.1米) |
|
某蒜薹生产基地喜获丰收,收获蒜薹200吨.经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并按这三种方式销售,计划平均每吨的售价及成本如下表:
(1)求y与x之间的函数关系式; (2)由于受条件限制,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润. |
|||||||||||||
南宁市政府为了了解本市市民对首届中国一东盟博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了300个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了图1和图2(部分). 根据图中提供的信息回答下列问题: (1)被抽查的居民中,人数最多的年龄段是______岁; (2)已知被抽查的300人中有83%的人对博览会总体印象感到满意,请你求出21~30岁年龄段的满意人数,并补全图11. (3)比较21~30岁和41~50岁这两个年龄段对博览会总体印象满意率的高低(四舍五入到1%).注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%. |
|
(1)化简: (2)解方程:. |
|