在一个不透明的口袋里,装有仅颜色不同的黑球、白球若干只,某小组做摸球实验:将球搅匀后从中随机摸出一个,记下颜色,再放入袋中,不断重复,右表是活动中的一组数据,则摸到白球的概率约是( )
A.0.4 B.0.5 C.0.6 D.0.7 |
||||||||||||||||||||||
如图是某几何体的三视图,其侧面积是( ) A.8π B.4π C.2π D.4 |
|
数据8,7,6,5,7,8,8的中位数与众数分别是( ) A.5,7 B.5,8 C.7,7 D.7,8 |
|
8的立方根是( ) A.2 B.-2 C.±2 D.2 |
|
如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题: (1)当t=2时,判断△BPQ的形状,并说明理由; (2)设△BPQ的面积为S(cm2),求S与t的函数关系式; (3)作QR∥BA交AC于点R,连接PR,当t为何值时,△APR∽△PRQ. |
|
问题背景: 在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积. 小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.我们把上述求△ABC面积的方法叫做构图法. (1)若△ABC三边的长分别为(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积. 思维拓展: (2)若△ABC三边的长分别为(m>0,n>0,且m≠n),试运用构图法求出这三角形的面积. 探索创新: (3)已知a、b都是正数,a+b=3,求当a、b为何值时+有最小值,并求这个最小值. (4)已知a,b,c,d都是正数,且a2+b2=c2,c=a2,求证:ab=cd. |
|
小明学习了垂径定理,做了下面的探究,请根据题目要求帮小明完成探究. (1)更换定理的题设和结论可以得到许多真命题.如图1,在⊙0中,C是劣弧AB的中点,直线CD⊥AB于点E,则AE=BE.请证明此结论; (2)从圆上任意一点出发的两条弦所组成的折线,成为该圆的一条折弦.如图2,PA,PB组成⊙0的一条折弦.C是劣弧AB的中点,直线CD⊥PA于点E,则AE=PE+PB.可以通过延长DB、AP相交于点F,再连接AD证明结论成立.请写出证明过程; (3)如图3,PA.PB组成⊙0的一条折弦,若C是优弧AB的中点,直线CD⊥PA于点E,则AE,PE与PB之间存在怎样的数量关系?写出结论,不必证明. |
|
如图,已知AB是⊙O的直径,点C在⊙O上,过点C的直线与AB的延长线交于点P,AC=PC,∠COB=2∠PCB. (1)求证:PC是⊙O的切线; (2)求证:BC=AB; (3)点M是的中点,CM交AB于点N,若AB=4,求MN•MC的值. |
|
如图1,已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC于点E,PF⊥CD于点F. (1)求证:BP=DP; (2)如图2,若四边形PECF绕点C按逆时针方向旋转,在旋转过程中是否总有BP=DP?若是,请给予证明;若不是,请用反例加以说明; (3)试选取正方形ABCD的两个顶点,分别与四边形PECF的两个顶点连接,使得到的两条线段在四边形PECF绕点C按逆时针方向旋转的过程中长度始终相等,并证明你的结论. |
|
“5.12”汶川大地震后,某药业生产厂家为支援灾区人民,准备捐赠320箱某种急需药品,该厂家备有多辆甲、乙两种型号的货车,如果单独用甲型号车若干辆,则装满每车后还余20箱未装;如果单独用同样辆数的乙型号车装,则装完后还可以再装30箱,已知装满时,每辆甲型号车比乙型号车少装10箱. (1)求甲、乙两型号车每辆车装满时,各能装多少箱药品? (2)已知将这批药品从厂家运到灾区,甲、乙两型号车的运输成本分别为320元/辆和350元/辆.设派出甲型号车u辆,乙型号车v辆时,运输的总成本为z元,请你提出一个派车方案,保证320箱药品装完,且运输总成本z最低,并求出这个最低运输成本为多少元? |
|