如图,在直角梯形ABCD中,已知AD∥BC,AB=3,AD=1,BC=6,∠A=∠B=90°.设动点P、Q、R在梯形的边上,始终构成以P为直角顶点的等腰直角三角形,且△PQR的一边与梯形ABCD的两底平行. (1)当点P在AB边上时,在图中画出一个符合条件的△PQR (不必说明画法); (2)当点P在BC边或CD边上时,求BP的长. |
|
如图,有一块半圆形钢板,直径AB=20cm,计划将此钢板切割成下底为AB的等腰梯形,上底CD的端点在圆周上,且CD=10cm.求图中阴影部分的面积. |
|
山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答: (1)每千克核桃应降价多少元? (2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售? |
|
如图所示,△ABC的外接圆圆心0在AB上,点D是BC延长线上一点,DM⊥AB于M,交AC于N,且AC=CD.CP是△CDN的ND边的中线. (1)求证:△ABC≌△DNC: (2)试判断CP与⊙O的位置关系,并证明你的结论. |
|
小强、王明、李勇三位同学对本校初三年级学生进行一次每周课余的“上网”时间抽样调查,结果如下图(t为上网时间),根据图中提供的信息,解答下列问题: (1)本次抽样调查的学生人数是______人; (2)每周上网时间在2≤t<3小时这组的频率是______; (3)已知本校初三年级共有500名学生,请估计该校初三年级学生每周上网不少于4小时的人数是多少人? |
|
(1)计算:. (2)解不等式组:,并把解集在数轴上表示出来. |
|
在平面直角坐标系xOy中,点A1,A2,A3,…和B1,B2,B3,…分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2(),那么点An的纵坐标是 . |
|
如图,已知△ABC是等腰直角三角形,CD是斜边AB的中线,△ADC绕点D旋转一定角度得到△A'DC',A'D交AC于点E,DC'交BC于点F,连接EF,若,则= . |
|
在一种掷骰子攻城游戏中规定:掷一次骰子几点朝上,攻城者就向城堡走几步.某游戏者掷一次骰子就走六步的槪率是 . | |
分解因式:x3-9x= . | |