下列命题中为真命题的是( ) A.命题“若x>y,则x>|y|”的逆命题 B.命题“x>1,则x2>1”的否命题 C.命题“若x=1,则x2+x-2=0”的否命题 D.命题“若x2>0,则x>1”的逆否命题 |
|
集合,集合,则P与Q的关系是( ) A.P=Q B.P⊇Q C.P⊆Q D.P∩Q=∅ |
|
已知函数f(x)=ax-1-lnx(a∈R). (Ⅰ)讨论函数f(x)在定义域内的极值点的个数; (Ⅱ)若函数f(x)在x=1处取得极值,对∀x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围; (Ⅲ)当0<x<y<e2且x≠e时,试比较的大小. |
|
已知A,B,C均在椭圆上,直线AB、AC分别过椭圆的左右焦点F1、F2,当时,有. (Ⅰ)求椭圆M的方程; (Ⅱ)设是椭圆M上的任一点,EF为圆N:x2+(y-2)2=1的任一条直径,求的最大值. |
|
如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=AB,∠ABC=60°,∠BCA=90°,点D、E分别在棱PB、PC上,且DE∥BC. (1)求证:BC⊥平面PAC; (2)当D为PB的中点时,求AD与平面PAC所成的角的正弦值; (3)是否存在点E使得二面角A-DE-P为直二面角?并说明理由. |
|
已知数列{an}的首项,,n=1,2,3,…. (Ⅰ)证明:数列是等比数列; (Ⅱ)求数列的前n项和Sn. |
|
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
(2)20至40岁,大于40岁中各抽取1名观众,求两人恰好都收看文艺节目的概率.
|
|||||||||||||||||||||||||||||||||||||||
在△ABC中,角A,B,C所对的边分别为a,b,c且满足 (I)求角C的大小; (II)求函数的最大值,并求取得最大值时x的大小. |
|
过圆x2+y2=4内点作圆的两条互相垂直的弦AB和CD,则AB+CD的最大值为 . | |
已知a=,则二项式展开式中x的一次项系数为 . | |