设α、β为两个不同的平面,l、m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若α∥β,则l∥m;②若l⊥m,则α⊥β、那么( ) A.①是真命题,②是假命题 B.①是假命题,②是真命题 C.①②都是真命题 D.①②都是假命题 |
|
直线x-2y+1=0关于直线x=1对称的直线方程是( ) A.x+2y-1=0 B.2x+y-1=0 C.2x+y-3=0 D.x+2y-3=0 |
|
如果一个水平放置的图形的斜二测直观图是一个底面为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A.2+ B. C. D.1+ |
|
设l,m是两条不同的直线,α是一个平面,则下列命题正确的是( ) A.若l⊥m,m⊂α,则l⊥α B.若l⊥α,l∥m,则m⊥α C.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m |
|
“x>1”是“x2>x”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 |
|
如图,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为( ) A. B. C.π D. |
|
若直线x-y-1=0的倾斜角为α,则α的值是( ) A. B. C. D. |
|
如图,在四面体ABCD中,平面ABC⊥ACD,AB⊥BC,AD=CD,∠CAD=30° (Ⅰ)若AD=2,AB=2BC,求四面体ABCD的体积. (Ⅱ)若二面角C-AB-D为60°,求异面直线AD与BC所成角的余弦值. |
|
已知在四棱锥P一ABCD中,底面ABCD是矩形,PA⊥平面ABCD, PA=AD=1,AB=2,E、F分别是AB、PD的中点. (Ⅰ)求证:AF∥平面PEC; (Ⅱ)求PC与平面ABCD所成角的正切值; (Ⅲ)求二面角P-EC-D的正切值. |
|
如图,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BC=1,∠BCC1=,BB1=2. (1)求证:平面AC1B⊥平面ABC; (2)试在棱CC1(不包含端点C,C1)上确定一点E的位置,使得EA⊥EB1. |
|