相关试题
当前位置:首页 > 高中数学试题
过双曲线manfen5.com 满分网的右焦点F,倾斜角为30°的直线交此双曲线于A,B两点,求|AB|.

manfen5.com 满分网
已知p:|x-4|≤6,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要而不充分条件,求实数m的取值范围.
若函数f(x)=ax4+bx2+c满足f′(1)=2,则f′(-1)=   
已知双曲线manfen5.com 满分网的一条渐近线方程是manfen5.com 满分网,它的一个焦点与抛物线y2=16x的焦点相同.则双曲线的方程为   
若点p(m,3)到直线4x-3y+1=0的距离为4,且点p在不等式2x+y<3表示的平面区域内,则m=   
已知命题p:∀x1,x2∈R,(f(x2)-f(x1))(x2-x1)≥0,则¬p是   
已知F1、F2为双曲线C:x2-y2=2的左、右焦点,点P在C上,|PF1|=2|PF2|,则cos∠F1PF2=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
设函数f(x)在R上可导,其导函数为f′(x),且函数f(x)在x=-2处取得极小值,则函数y=xf′(x)的图象可能是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的斜率为manfen5.com 满分网,那么|PF|=( )
A.manfen5.com 满分网
B.8
C.manfen5.com 满分网
D.16
观察(x2)′=2x,(x4)′=4x3,y=f(x),由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )
A.f(x)
B.-f(x)
C.g(x)
D.-g(x)
共1028964条记录 当前(62637/102897) 首页 上一页 62632 62633 62634 62635 62636 62637 62638 62639 62640 62641 62642 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.