已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(a,b)向⊙O引切线PQ,切点为Q,且满足|PQ|=|PA|. (1)求实数a,b间满足的等量关系; (2)求线段PQ长的最小值; (3)若以P为圆心所作的⊙P与⊙O有公共点,试求半径最小值时⊙P的方程. |
|
如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点. (1)证明:PB∥平面ACM; (2)求直线AM与平面ABCD所成角的正切值. |
|
已知直线l:kx-y+1+2k=0(k∈R). (1)若直线l不经过第四象限,求k的取值范围; (2)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程. |
|
在三棱锥S-ABC中,△ABC是边长为2的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点. (1)证明:AC⊥SB; (2)求三棱锥B-CMN的体积. |
|
如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在直线上. (1)AD边所在直线的方程; (2)矩形ABCD外接圆的方程. |
|
直线ax+by=1与圆x2+y2=1相交于A,B两点,若△AOB是直角三角形(O是坐标原点),则点P(a,b)与点(2,2)之间距离的最小值为 . | |
如图所示的正方体ABCD-A1B1C1D1中,过顶点B、D、C1作截面,则二面角B-DC1-C的平面角的余弦值是 . |
|
圆C与圆(x+2)2+(y-1)2=1关于直线y=x+2对称,则圆C的方程是 . | |
过点M(5,2)且在y轴上的截距是在x轴上的截距的2倍的直线方程是 . | |
已知M(3,0)是圆x2+y2-8x-2y+10=0内一点,则过点M最长的弦所在的直线方程是 . | |