用秦九韶算法计算多项式f(x)=3x6+4x5+5x4+6x3+7x2+8x+1当x=0.4时的值时,需要做乘法和加法的次数共 次. | |
设F1、F2分别为双曲线:-=1(a>0,b>0)的左、右焦点,P为双曲线右支上任一点,若的最小值为8a,则该双曲线的离心率的取值范围是( ) A.[3,+∞) B.(1,3] C.(1,] D.[,+∞) |
|
设m,n∈R,若直线(m+1)x+(n+1)y-2=0与圆(x-1)2+(y-1)2=1相切,则m+n的取值范围是( ) A.[1-,1+] B.(-∞,1-]∪[1+,+∞) C.[2-2,2+2] D.(-∞,2-2]∪[2+2,+∞) |
|
已知椭圆的焦点为F1、F2,在长轴A1A2上任取一点M,过M作垂直于A1A2的直线交椭圆于P,则使得的M点的概率为( ) A. B. C. D. |
|
一个几何体的三视图如图所示,则该几何体外接球的表面积为( ) A. B. C. D. |
|
甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( ) A.甲的成绩的平均数小于乙的成绩的平均数 B.甲的成绩的中位数等于乙的成绩的中位数 C.甲的成绩的方差小于乙的成绩的方差 D.甲的成绩的极差小于乙的成绩的极差 |
|
从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么对立的两个事件是( ) A.至少有1个白球,至少有1个红球 B.至少有1个白球,都是红球 C.恰有1个白球,恰有2个白球 D.至少有1个白球,都是白球 |
|
已知a,b是两条不重合的直线,α,β是两个不重合的平面,下列命题中正确的是( ) A.a∥b,b∥α,则a∥α B.a,b⊂α,a∥β,b∥β,则α∥β C.a⊥α,b∥α,则a⊥b D.当a⊂α,且b⊄α时,若b∥α,则a∥b |
|
下列有关命题的说法错误的是( ) A.命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0” B.若p∨q为真命题,则p、q均为真命题 C.“x=2”是“x2-3x+2=0”的充分不必要条件 D.对于命题p:∃x∈R使得x2+x+1<0,则¬p:∀x∈R,均有x2+x+1≥0 |
|
过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 |
|