相关试题
当前位置:首页 > 高中数学试题
已知点P是抛物线y2=4x上一点,设点P到此抛物线准线的距离为d1,到直线x+2y+10=0的距离为d2,则d1+d2的最小值是( )
A.5
B.4
C.manfen5.com 满分网manfen5.com 满分网
D.manfen5.com 满分网
”m>n>0”是”方程mx2+ny2=1表示焦点在y轴上的椭圆”的( )
A.充分而不必要条件
B.必要而不充分条件
C.充要条件
D.既不充分也不必要条件
命题:“若a2+b2=0(a,b∈R),则a=b=0”的逆否命题是( )
A.若a≠b≠0(a,b∈R),则a2+b2≠0
B.若a=b≠0(a,b∈R),则a2+b2≠0
C.若a≠0且b≠0(a,b∈R),则a2+b2≠0
D.若a≠0或b≠0(a,b∈R),则a2+b2≠0
双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=( )
A.manfen5.com 满分网
B.-4
C.4
D.manfen5.com 满分网
抛物线y2=4x,经过点P(3,m),则点P到抛物线焦点的距离等于( )
A.manfen5.com 满分网
B.4
C.manfen5.com 满分网
D.3
如图,椭圆C1manfen5.com 满分网+y2=1,x轴被曲线C2:y=x2-b截得的线段长等于C1的长半轴长.
(1)求实数b的值;
(2)设C2与y轴的交点为M,过坐标原点O的直线l与C2相交于点A、B,直线MA、MB分别与C1相交与D、E.
①证明:MD•ME=0;
②记△MAB,△MDE的面积分别是S1,S2.若manfen5.com 满分网=λ,求λ的取值范围.

manfen5.com 满分网
如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(1)求证:AC⊥平面BDE;
(2)设点M是线段BD 上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

manfen5.com 满分网
已知双曲线W:manfen5.com 满分网,其中一个焦点到相应准线间的距离为manfen5.com 满分网,渐近线方程为manfen5.com 满分网
(1)求双曲线W的方程
(2)过点Q(0,1)的直线l交双曲线W与A,B两个不同的点,若坐标原点O在以线段AB为直径的圆外,求直线l的斜率的取值范围.
如图,点P为矩形ABCD所在平面外一点,PA⊥平面ABCD,E,F分别为线段PB,PC的中点,且AD=4,PA=AB=2
(1)求直线EC和面PAD所成的角
(2)求点P到平面AFD的距离.

manfen5.com 满分网
已知点F(1,0)和直线l:x=-1,动点P到直线l的距离等于到点F的距离.
(1)求点P的轨迹C的方程
(2)过点(2,0)作直线交P的轨迹C于点A,B,交l于点M,若点M的纵坐标为-3,求|AB|
共1028964条记录 当前(63180/102897) 首页 上一页 63175 63176 63177 63178 63179 63180 63181 63182 63183 63184 63185 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.