已知函数f(x)=(a+)lnx+-x(a>1). (l)试讨论f(x)在区间(0,1)上的单调性; (2)当a∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1)),Q(x2,f (x2 )),使得曲线y=f(x)在点P,Q处的切线互相平行,求证:x1+x2>. |
|
已知椭圆E:的一个交点为,而且过点. (Ⅰ)求椭圆E的方程; (Ⅱ)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交x轴于点N,M,若直线OT与过点M,N的圆G相切,切点为T.证明:线段OT的长为定值,并求出该定值. |
|
如图,直三棱柱ABC-A'B'C',∠BAC=90°,AB=AC=λAA',点M,N分别为A'B和B'C'的中点. (I)证明:MN∥平面A'ACC'; (II)若二面角A'-MN-C为直二面角,求λ的值. |
|
某班50位学生期中考试数学成绩的频率直方分布图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]. (1)求图中x的值; (2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望. |
|
等差数列{an}中,a1=3,前n项和为Sn,等比数列{bn}各项均为正数,b1=1,且b2+S2=12,{bn}的公比q=. (1)求an与bn; (2)证明:≤++…+<. |
|
函数(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为, (1)求函数f(x)的解析式; (2)设,则,求α的值. |
|
在如图所示的数表中,第i行第j列的数记为ai,j,且满足a1,j=2j-1,ai,1=i,ai+1,j+1=ai,j+ai+1,j(i,j∈N*);又记第3行的数3,5,8,13,22,39,…为数列{bn}.则 (1)此数表中的第6行第3列的数为 ; (2)数列{bn}的通项公式为 . |
|
已知不等式组表示的平面区域为Ω,其中k≥0,则当Ω的面积最小时的k为 . | |
已知正方形ABCD的边长为1,点E是AB边上的动点,则 (Ⅰ)的值为 ; (Ⅱ)的最大值为 . |
|
某几何体的三视图如图所示,该几何体的表面积是 . |
|