复数z满足i•z=1-2i,则z=( ) A.2-i B.-2-i C.1+2i D.1-2i |
|
已知函数f(x)=,g(x)=alnx,a∈R. (1)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程; (2)设函数h(x)=f(x)-g(x),当h(x)存在最小值时,求其最小值φ(a)的解析式; (3)对(2)中的φ(a),证明:当a∈(0,+∞)时,φ(a)≤1. |
|
已知函数f(x)=(a>0). (1)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间; (2)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间[e-1,e]上有两个零点,求实数b的取值范围. |
|
设函数f(x)=, (1)求函数f(x)的单调区间; (2)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集. |
|
定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)•f(b). (1)求证:f(0)=1; (2)求证:对任意的x∈R,恒有f(x)>0; (3)求证:f(x)是R上的增函数; (4)若f(x)•f(2x-x2)>1,求x的取值范围. |
|
设函数, (1)对于任意实数x,f'(x)≥m恒成立,求m的最大值; (2)若方程f(x)=0有且仅有一个实根,求a的取值范围. |
|
已知集合A={x|(x-2)[x-(3a+1)]<0},. (Ⅰ) 当a=2时,求A∩B; (Ⅱ) 求使B⊆A的实数a的取值范围. |
|
执行程序框图,输出的T= . |
|
如图所示,AB与CD是⊙O的直径,AB⊥CD,P是AB延长线上一点,连PC交⊙O于点E,连DE交AB于点F,若AB=2BP=4,则PF= . |
|
已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,则a-b的值为 . | |