复数(i为虚数单位)等于( ) A.-1-2i B.-1+2i C.1-2i D.1+2i |
|
已知f(x)=(x2+ax+a)e-x(a≤2,x∈R). (1)当a=1时,求f(x)的单调区间; (2)是否存在实数a,使f(x)的极大值为3?若存在,求出a的值,若不存在,说明理由. |
|
已知函数f(x)=x3+2x2-ax+1. (I)若函数f(x)在点(1,f(1))处的切线斜率为4,求实数a的值; (II)若函数f(x)在区间(-1,1)上是单调函数,求实数m的取值范围. |
|
已知函数f(x)=x2+ax+b的两个零点是-2和3 (1)求a+b的值. (2)求不等式af(-2x)>0的解集. |
|
已知定义域为R的函数是奇函数. (Ⅰ)求a,b的值; (Ⅱ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围. |
|
已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}. (1)若A∩B=[0,3],求实数m的值; (2)若A⊆∁RB,求实数m的取值范围. |
|
定义在(-∞,+∞)上的偶函数f(x)满足f(x+1)=-f(x),且在[-1,0]上是增函数,下面是关于f(x)的判断: ①f(x)是周期函数; ②f(x)的图象关于直线x=1对称; ③f(x)在[0,1]上是增函数; ④f(2)=f(0). 其中正确的判断是 (把你认为正确的判断都填上). |
|
函数f(x)=lnx+2x-1零点的个数为 . | |
设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxn,则a1+a2+…+a99的值为 . | |
已知函数f(x)的导函数为f′(x),且满足f(x)=2x2-xf′(2),则f′(5)= . | |