设函数f(x)=是奇函数(a,b,c都是整数),且f(1)=2,f(2)<3. (1)求a,b,c的值; (2)当x<0,f(x)的单调性如何?用单调性定义证明你的结论. |
|
已知cosα=,cos(α-β)=,且0<β<α<, (Ⅰ)求tan2α的值; (Ⅱ)求β. |
|
已知f(x)是定义在R上的不恒为零的函数,且对于任意实数a、b∈R满足:f=af(b)+bf(a),f(2)=2,an=(n∈N*),bn=(n∈N*),考察下列结论: ①f(0)=f(1); ②f(x)为偶函数; ③数列{bn}为等差数列; ④数列{an}为等比数列, 其中正确的是 .(填序号) |
|
在四边形ABCD中,,则四边形ABCD的面积为 . | |
已知△ABC的一个内角为120°,并且三边长构成公差为4的等差数列,则△ABC的面积为 . | |
若的值为 . | |
若= . | |
设M(x,y)为抛物线C:x2=8y上一点,F为抛物线C的焦点,以F为圆心、|FM|为半径的圆和抛物线C的准线相交,则y的取值范围是( ) A.(0,2) B.[0,2] C.(2,+∞) D.[2,+∞) |
|
若数列{an}的通项公式是an=(-1)n(3n-2),则a1+a2+…+a10=( ) A.15 B.12 C.-12 D.-15 |
|
若直线 3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为( ) A.-1 B.1 C.3 D.-3 |
|