已知函数y=f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线6x+2y+5=0,则f(x)极大值与极小值之差为 . | |
定义在R上的偶函数f(x),当x≥0时.f(x)=2x,则满足f(1-2x)<f(3)的x取值范围是 . | |
若函数f(x)=loga(x3-ax)(a>0,a≠1)在区间内单调递增,则a的取值范围是( ) A. B. C. D. |
|
若函数f(x)=(k-1)ax-a-x(a>0,a≠1)在R上既是奇函数,又是减函数,则g(x)=loga(x+k)的图象是( ) A. B. C. D. |
|
△ABC的三内角A,B,C所对边的长分别为a,b,c设向量,,若,则角C的大小为( ) A. B. C. D. |
|
在R上定义的函数f(x)是偶函数,且f(x)=f(2-x).若f(x)在区间[1,2]上是减函数,则f(x) ( ) A.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数 B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数 C.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数 D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数 |
|
已知函数f(x)=2sinωx(ω>0)在区间上的最小值是-2,则ω的最小值等于( ) A. B. C.2 D.3 |
|
将a2+b2+2ab=(a+b)2改写成全称命题是( ) A.∀a>0,b>0,a2+b2+2ab=(a+b)2 B.∀a,b∈R,a2+b2+2ab=(a+b)2 C.∃a<0,b>0,a2+b2+2ab=(a+b)2 D.∃a,b∈R,a2+b2+2ab=(a+b)2 |
|
函数f(x)=+lg(3x+1)的定义域是( ) A.(-,+∞) B.(-,1) C.(-,) D.(-∞,-) |
|
已知全集U=R,且A={x||x-1|>2},B={x|x2-6x+8<0},则(CUA)∩B等于( ) A.(2,3) B.[2,3] C.(2,3] D.(-2,3] |
|