如果直线l、m与平面α、β、γ满足β∩γ=l,l∥α,m⊂α,m⊥γ,则必有( ) A.α⊥γ且m∥β B.α⊥γ且l⊥m C.m∥β且l⊥m D.α∥β且α⊥γ |
|
下列判断错误的是( ) A.“am2<bm2”是“a<b”的充分不必要条件 B.命题“∀x∈R,x3-x2-1≤0”的否定是“∃x∈R,x3-x2-1>0” C.若p∧q为假命题,则p,q均为假命题 D.若ξ~B(4,0.25)则Eξ=1 |
|
数列{an}中,a2=1,2an+1-2an=1,则a10=( ) A.4、5 B.5 C.5、5 D.6 |
|
集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( ) A.0 B.1 C.2 D.4 |
|
设函数f(x)=kax-a-x(a>0且a≠1)是奇函数, (1)求k的值; (2)若f(1)>0,试求不等式f(x2+2x)+f(x-4)>0的解集; (3)若,且g(x)=a2x+a-2x-2mf(x)在[1,+∞)上的最小值为-2,求m的值. |
|
已知函数f(x)=x2,g(x)=x-1. (1)若∃x∈R使f(x)<b•g(x),求实数b的取值范围; (2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在[0,1]上单调递增,求实数m的取值范围. |
|
某厂生产篮球、足球、排球,三类球均有A、B两种型号,该厂某天的产量如下表(单位:个):
(1)求x的值; (2)在所抽取6个篮球样本中,经检测它们的得分如下: 4 9.2 8.7 9.3 9.0 8.4 把这6个篮球的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.3的概率; (3)在所抽取的足球样本中,从中任取2个,求至少有1个为A型足球的概率. |
|||||||||||||
已知,x∈R. (1)求f(x)的表达式; (2)若方程有两个不相等的实数根α,β,求αβ的值; (3)若函数g(x)=f(x)-a在x∈[1,e]上有零点,求实数a的取值范围. |
|
已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π,x∈R)的部分图象如下图所示. (1)求函数f(x)的解析式; (2)求函数y=f(-x)的单调区间及在x∈[-2,2]上最值,并求出相应的x的值. |
|
已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立,且f(-6)=-2,当x1,x2∈[0,3]且x1≠x2时,都有,则给出下列命题: ①f(2010)=-2; ②函数y=f(x)图象的一条对称轴为直线x=-6; ③函数y=f(x)在[-9,-6]上为减函数; ④函数f(x)在[-9,9]上有4个零点,上述命题中的所有正确命题的序号是 .(把你认为正确命题的序号都填上) |
|