设x、y∈R,、为直角坐标平面内x、y轴正方向上的单位向量,=x+(y+2),=x+(y-2),且||+||=8. (1)求点M(x,y)的轨迹C的方程; (2)过点(0,3)作直线l与曲线C交于A、B两点,设,是否存在这样的直线l,使得四边形OAPB是矩形?若存在,求出直线l的方程;若不存在,试说明理由. |
|
已知等差数列{an}的首项为a,公差为b,且不等式ax2-3x+2>0的解集为(-∞,1)∪(b,+∞). (1)求数列{an}的通项公式及前n项和Sn公式; (2)若数列{bn}满足bn=an•2n,求数列{bn}的前n项和Tn. |
|
如图,货轮在海上以35n mile/h的速度沿方位角(从正北方向顺时针转到目标方向线的水平角)为152°的方向航行.为了确定船位,在B点处观测到灯塔A的方位角为122°.半小时后,货轮到达C点处,观测到灯塔A的方位角为32°.求此时货轮与灯塔之间的距离. |
|
已知椭圆C1:+=1(a>b>0)的离心率为,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切. (1)求椭圆C1的方程; (2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程. |
|
已知等差数列{an}中,a2=9,a5=21. (1)求{an}的通项公式; (2)令bn=2an,求数列{bn}的前n项和Sn. |
|
若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1…an=a1即ai=an-i+1 (i是正整数,且1≤i≤n),就称该数列为“对称数列”. (1)已知数列{bn}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{bn}的每一项 (2)已知{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为50,公差为-4的等差数列,数列{cn}的前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少? (3)对于给定的正整数m>1,试写出所有项数不超过2m的对称数列,使得1,2,22…2m-1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008 |
|
已知:A={m|方程表示双曲线},B={m|m2-am+1<0},若m∈B是m∈A的必要不充分条件,求a的取值范围. |
|
如图是一个破损的圆块,只给出一把带有刻度的直尺和一个量角器,请给出计算这个圆块直径长度的一种方案. . |
|
求不等式|x|+|y|≤2所表示的平面区域的面积 . | |
已知数列{an}的前n项和Sn满足关系式lg(sn-2)=2n,则该数列的通项公式为 . | |