某人有资金10万元,准备用于投资经营甲、乙两种商品,据资料统计,经营甲商品获利2万元的概率为0.4,获利3万元的概率为0.3,亏损1万元的概率为0.3;经营乙商品获利2万元的概率为0.6,获利4万元的概率为0.2,亏损2万元的概率为0.2,则投资者应经营 商品• | |
对有n(n≥4)个元素的总体{1,2,…,n}进行抽样,先将总体分成两个子总体{1,2,…,m}和{m+1,m+2,…,n}(m是给定的正整数,且2≤m≤n-2),再从每个子总体中各随机抽取2个元素组成样本.用Pij表示元素i和j同时出现在样本中的概率,则P1n= ; 所有Pij(1≤i<j≤n)的和等于 . | |
若随机变量X服从两点分布,且成功概率为0.7;随机变量Y服从二项分布,且Y~B(10,0.8),则E(X),D(X),E(Y),D(Y)分别是 , , , . | |
水平桌面α上放有4个半径均为2R的球,且相邻的球都相切(球心的连线构成正方形).在这4个球的上面放1个半径为R的小球,它和下面4个球恰好都相切,则小球的球心到水平桌面α的距离是( ) A.2R B.3R C. D. |
|
在(x-1)(x-2)(x-3)(x-4)(x-5)的展开式中,含x4的项的系数是( ) A.-15 B.85 C.-120 D.274 |
|
||=1,||=,•=0,点C在∠AOB内,且∠AOC=30°,设=m+n(m、n∈R),则等于( ) A. B.3 C. D. |
|
已知服从正态分布N(μ,σ2)的随机变量,在区间(μ-σ,μ+σ),(μ-2σ,μ+2σ)和(μ-3σ,μ+3σ)内取值的概率分别为68.3%,95.4%和99.7%.某大型国有企业为10000名员工定制工作服,设员工的身高(单位:cm)服从正态分布N(173,52),则适合身高在163~183cm范围内员工穿的服装大约要定制( ) A.6830套 B.9540套 C.9520套 D.9970套 |
|
在独立性检验中,统计量Χ2有两个临界值:3.841和6.635.当Χ2>3.841时,有95%的把握说明两个事件有关,当Χ2>6.635时,有99%的把握说明两个事件有关,当Χ2≤3.841时,认为两个事件无关.在一项打鼾与患心脏病的调查中,共调查了2000人,经计算Χ2=20.87.根据这一数据分析,认为打鼾与患心脏病之间( ) A.有95%的把握认为两者有关 B.约有95%的打鼾者患心脏病 C.有99%的把握认为两者有关 D.约有99%的打鼾者患心脏病 |
|
在相关分析中,对相关系数r,下列说法正确的是( ) A.r越大,线性相关程度越强 B.|r|越小,线性相关程度越强 C.|r|越大,线性相关程度越弱,|r|越小,线性相关程度越强 D.|r|≤1且|r|越接近1,线性相关程度越强,|r|越接近0,线性相关程度越弱 |
|
如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A.96 B.84 C.60 D.48 |
|