如果数列{an}的前n项和为,那么这个数列的通项公式为( ) A.an=2(n2+n+1) B.an=3×2n C.an=3n+1 D.an=2×3n |
|
已知集合S={y|y=x2+1,x∈R},T={z|z=-2x,x∈R},则S∩T=( ) A.{-1} B.{(-1,2)} C.R D.[1,+∞) |
|
已知f(x)=x(x-a)(x-b),点A(s,f(s)),B(t,f(t)). (Ⅰ)若a=b=1,求函数f(x)的单调递增区间; (Ⅱ)若函数f(x)的导函数f'(x)满足:当|x|≤1时,有|f'(x)|≤恒成立,求函数f(x)的解析表达式; (Ⅲ)若0<a<b,函数f(x)在x=s和x=t处取得极值,且,证明:与不可能垂直. |
|
已知函数y=f(x)=. (1)求函数y=f(x)的图象在x=处的切线方程; (2)求y=f(x)的最大值; (3)设实数a>0,求函数F(x)=af(x)在[a,2a]上的最小值. |
|
命题p:方程x2+mx+1=0有两个不等的正实数根,命题q:方程4x2+4(m+2)x+1=0无实数根.若“p或q”为真命题,求m的取值范围. |
|
如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,设小正方形的边长为多少时,盒子容积最大?最大值为多少? |
|
己知下列三个方程 x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0至少有一个方程有实根,求实数a的取值范围. |
|
设函数的定义域为A,若命题p:3∈A与q:5∈A有且只有一个为真命题,求实数a的取值范围. |
|
函数的导数为 . | |
已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p是q的 条件. | |