相关试题
当前位置:首页 > 高中数学试题
设数列{an}满足a1=a,an+1=an2+a1,M={a∈R|n∈N*,|an|≤2}.
(1)当a∈(-∞,-2)时,求证:a∉M;
(2)当a∈(0,manfen5.com 满分网]时,求证:a∈M;
(3)当a∈(manfen5.com 满分网,+∞)时,判断元素a与集合M的关系,并证明你的结论.
某大楼共5层,4个人从第一层上电梯,假设每个人都等可能地在每一层下电梯,并且他们下电梯与否相互独立.又知电梯只在有人下时才停止.
(I)求某乘客在第i层下电梯的概率(i=2,3,4,5);
(Ⅱ)求电梯在第2层停下的概率;
(Ⅲ)求电梯停下的次数ξ的数学期望.
过点P(-3,0)且倾斜角为30°的直线和曲线manfen5.com 满分网(t为参数)相交于A,B两点.求线段AB的长.
(选修4-2:矩阵与变换)
已知矩阵A=manfen5.com 满分网,若矩阵A属于特征值6的一个特征向量为α1=manfen5.com 满分网,属于特征值1的一个特征向量为α2=manfen5.com 满分网.求矩阵A,并写出A的逆矩阵.
已知函数f(x)=x3-3ax(a∈R),g(x)=lnx.
(Ⅰ)当a=1时,求f(x)在区间[-2,2]上的最小值;
(Ⅱ)若在区间[1,2]上f(x)的图象恒在g(x)图象的上方,求a的取值范围;
(Ⅲ)设h(x)=|f(x)|,x∈[-1,1],求h(x)的最大值F(a)的解析式.
已知椭圆E:manfen5.com 满分网+manfen5.com 满分网=1的左焦点为F,左准线l与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线FG与直线l交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;
(Ⅲ)在平面上是否存在一点P,使得manfen5.com 满分网=manfen5.com 满分网?若存在,求出点P坐标;若不存在,请说明理由.
某自来水公司准备修建一条饮水渠,其横截面为如图所示的等腰梯形,∠ABC=120°,
按照设计要求,其横截面面积为manfen5.com 满分网平方米,为了使建造的水渠用料最省,横截面的周
长(梯形的底BC与两腰长的和)必须最小,设水渠深h米.
(Ⅰ)当h为多少米时,用料最省?
(Ⅱ)如果水渠的深度设计在manfen5.com 满分网的范围内,求横截面周长的最小值.

manfen5.com 满分网
已知等差数列{an}中,首项a1=1,公差d为整数,且满足a1+3<a3,a2+5>a4,数列{bn}满足manfen5.com 满分网,其前n项和为Sn
(1)求数列{an}的通项公式an
(2)若S2为S1,Sm(m∈N*)的等比中项,求m的值.
如图,椭圆manfen5.com 满分网的左、右焦点分别为F1、F2,点A(4,m)在椭圆E上,且manfen5.com 满分网,点D(2,0)到直线F1A的距离manfen5.com 满分网
(1)求椭圆E的方程;
(2)设点P位椭圆E上的任意一点,求manfen5.com 满分网的取值范围.

manfen5.com 满分网
已知函数manfen5.com 满分网
(1)求函数f(x)的最小正周期;
(2)在△ABC中,角A、B、C的分别是a、b、c,若(2a-c)cosB=bcosC,求f(A)的取值范围.
共1028964条记录 当前(68995/102897) 首页 上一页 68990 68991 68992 68993 68994 68995 68996 68997 68998 68999 69000 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.