设( ) A.0 B.1 C.2 D.3 |
|
若函数f(x)=-cos2x+(x∈R),则f(x)是( ) A.最小正周期为的奇函数 B.最小正周期为π的奇函数 C.最小正周期为的偶函数 D.最小正周期为π的偶函数 |
|
已知,则等于( ) A. B.7 C. D.-7 |
|
复数的值是( ) A.2i B.-2i C.2 D.-2 |
|
设函数f(x)=lnx-ax2-bx. (Ⅰ)当a=b=时,求f(x)的最大值; (Ⅱ)令F(x)=f(x)+ax2+bx+(0<x≤3),以其图象上任意一点P(x,y)为切点的切线的斜率k≤恒成立,求实数a的取值范围; (Ⅲ)当a=0,b=-1时,方程2mf(x)=x2有唯一实数解,求正数m的值. |
|
已知椭圆的两焦点为,,离心率. (1)求此椭圆的方程; (2)设直线l:y=x+m,若l与此椭圆相交于P,Q两点,且|PQ|等于椭圆的短轴长,求m的值; (3)以此椭圆的上顶点B为直角顶点作椭圆的内接等腰直角三角形ABC,这样的直角三角形是否存在?若存在,请说明有几个;若不存在,请说明理由. |
|
某厂生产某种产品的年固定成本为250万元,每生产x千件,需另投入成本为C(x),当年产量不足80千件时,(万元);当年产量不小于80千件时,(万元).现已知此商品每件售价为500元,且该厂年内生产此商品能全部销售完. (1)写出年利润L(万元)关于年产量x(千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大? |
|
如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=45°,DC=1,AB=2,PA⊥平面ABCD,PA=1. (1)求证:AB∥平面PCD (2)求证:BC⊥平面PAC. |
|
已知锐角△ABC中的内角A、B、C的对边分别为a,b,c,定义向量. (1)求函数f(x)=sin2xcosB-cos2xsinB的单调递增区间; (2)如果b=2,求△ABC的面积的最大值. |
|
已知函数,f(x)=,数列{an}满足a1=1,an+1=f(an)(n∈N*) (I)求证数列{}是等差数列,并求数列{an}的通项公式; (II)记Sn=a1a2+a2a3+..anan+1,求Sn. |
|