等差数列{an}中,an=2n-4,则S4等于( ) A.12 B.10 C.8 D.4 |
|
若A为△ABC的内角,则下列函数中一定取正值的是( ) A.sinA B.cosA C.tanA D. |
|
数列-3,1,5,9,…的一个通项公式为( ) A.4n-7 B.1-4n C.n2-4n D.n-4 |
|
设椭圆的左焦点为F,上顶点为A,过点A且与AF垂直的光线经椭圆的右准线反射,反射光线与直线AF平行. (1)求椭圆的离心率; (2)设入射光线与右准线的交点为B,过A,B,F三点的圆恰好与直线3x一y+3=0相切,求椭圆的方程. |
|
养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12m,高4m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4m(高不变);二是高度增加4m(底面直径不变) (1)分别计算按这两种方案所建的仓库的体积; (2)分别计算按这两种方案所建的仓库的表面积; (3)哪个方案更经济些? |
|
河上有抛物线型拱桥,当水面距拱顶5米时,水面宽度为8米,一小船宽4米,高2米,载货后船露出水面的部分高0.75米,问水面上涨到与抛物线拱顶距多少时,小船开始不能通行? |
|
在多面体ABCDEF中,点O是矩形ABCD的对角线的交点,三角形CDE是等边三角形,棱EF∥BC且EF=BC. (I)证明:FO∥平面CDE; (Ⅱ)设BC=CD,证明EO⊥平面CDF. |
|
已知双曲线的方程是16x2-9y2=144. (1)求这双曲线的焦点坐标、离心率和渐近线方程; (2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且|PF1|•|PF2|=32,求∠F1PF2的大小. |
|
已知平面α,β,直线l,且α∥β,l⊄β,且l∥α, 求证:l∥β |
|
如图AB为圆O的直径,点C在圆周上(异于A,B点)直线PA垂直于圆所在的平面,点M为线段PB的中点,有以下四个命题: (1)PA∥平面MOB; (2)MO∥平面PAC; (3)OC⊥平面PAB; (4)平面PAC⊥平面PBC, 其中正确的命题是 . |
|