设f(x)=的图象为c1,c1关于点A(2,1)对称的图象为c2,c2对应的函数为g(x) (1)求g(x)的解析表达式; (2)解不等式(a>0且≠1) |
|
设函数,其中b>0,c∈R.当且仅当x=-2时,函数f(x)取得最小值-2. (1)求函数f(x)的表达式; (2)若方程f(x)=x+a(a∈R)至少有两个零点,求实数a取值的集合. |
|
设f(x)=x3+bx2+cx+d,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根;当0<k<4时,f(x)-k=0有三个相异实根,现给下列命题: (1)f(x)-4=0与f'(x)=0有一个相同的实根; (2)f(x)=0与f'(x)=0有一个相同的实根; (3)f(x)+3=0的任一实根大于f(x)-1=0的任一实根; (4)f(x)+5=0的任一实根小于f(x)-2=0的任一实根.其中所有正确命题是 . |
|
若函数f(x)=loga(x3-ax)(a>0,a≠1)在区间(,0)内单调递增,则实数a的取值范围是 . | |
已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围为 . | |
如果f'(x)是二次函数,且 f'(x)的图象开口向上,顶点坐标为(1,-),那么曲线y=f(x)上任一点的切线的倾斜角α的取值范围是 . | |
若函数f(x)对于任意实数x满足条件f(x)•f(x+2)=-1,f(1)=-5,则f[f(5)]= . | |
给出下列四个命题: ①函数f(x)=x|x|+bx+c为奇函数的充要条件是c=0; ②函数y=2-x(x>0)的反函数是y=-log2x(x>0); ③若函数f(x)=lg(x2+ax-a)的值域是R,则a≤-4或a≥0; ④若函数y=f(x-1)是奇函数,则函数y=f(x)的图象关于点(-1,0)对称. 其中正确命题的个数是( ) A.1 B.2 C.3 D.4 |
|
已知函数f(x)满足: ①定义域为R; ②∀x∈R,有f(x+2)=2f(x); ③当x∈[-1,1]时,f(x)=-|x|+1. 则方程f(x)=log4|x|在区间[-10,10]内的解个数是( ) A.20 B.12 C.11 D.10 |
|
如图展示了一个由区间(0,4)到实数集R的映射过程:区间(0,4)中的实数m对应数轴上的点M(如图),将线段AB围成一个正方形,使两端点A、B恰好重合(如图),再将这个正方形放在平面直角坐标系中,使其中两个顶点在y轴上,点A的坐标为(0,4)(如图),若图中直线AM与x轴交于点N(n,0),则m的象就是n,记作f(m)=n.现给出以下命题: ①f(2)=0; ②f(x)的图象关于点(2,0)对称; ③f(x)在(3,4)上为常数函数;④f(x)为偶函数. 其中正确命题的个数有( ) A.1 B.2 C.3 D.4 |
|