复数对应的点在第 象限. | |
设集合A={x|-5≤x<1},B={x|x≤2},则A∪B= . | |
命题:对所有的实数a,都有|a|≥0,它的否定为 . | |
在数列{an}中,已知a1=-1,an+1=2an-n+1(n=1,2,3,…). (1)求数列{an}的通项公式; (2)为数列{bn}的前n项和,求; (3)若总存在正自然数n,使Sn+n-2bn<m成立,求m的取值范围. |
|
已知函数 (1)若f(x)在[1,3]上单调递增,求a的取值范围; (2)若f(x)在x=x1,x=x2处取极值,且满足|f(x1)-f(x2)|≤|x1-x2|,求a的取值范围. |
|
厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品. (Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率; (Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.求该商家可能检验出不合格产品数ξ的分布列及期望Eξ,并求该商家拒收这批产品的概率. |
|
某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交a(3≤a≤5)元的管理费,预计当每件产品的售价为x(9≤x≤11)元时,一年的销售量为(12-x)2万件. (1)求分公司一年的利润L(万元)与每件产品的售价x的函数关系式; (2)当每件产品的售价为多少元时,分公司一年的利润L最大,并求出L的最大值Q(a). |
|
给出如下两个命题:命题p:|a-1|<6;命题q:集合A={x|x2+(a+2)x+1=0},B={x|x>0},且A∩B=φ.求实数a的取值范围,使命题p,q中有且只有一个真命题. |
|
设f(x)=x3+bx2+cx+d,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根;当0<k<4时,f(x)-k=0有三个相异实根,现给下列命题: (1)f(x)-4=0与f'(x)=0有一个相同的实根; (2)f(x)=0与f'(x)=0有一个相同的实根; (3)f(x)+3=0的任一实根大于f(x)-1=0的任一实根; (4)f(x)+5=0的任一实根小于f(x)-2=0的任一实根.其中所有正确命题是 . |
|
设集合,且M,N都是集合{x|0≤x≤1}的子集,如果把b-a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的长度的最小值是 . | |