相关试题
当前位置:首页 > 高中数学试题
一袋中有x(x∈N*)个红球,3个黑球和2个白球,现从中任取2个球.
(Ⅰ)当x=3时,求取出的2个球颜色都相同的事件的概率;
(Ⅱ)当x=3时,设ξ表示取出的2个球中红球的个数,求ξ的概率分布及数学期望;
(Ⅲ)如果取出的2个球颜色不相同的事件概率小于manfen5.com 满分网,求x的最小值.
如图,在边长为2的正方体ABCD-A1B1C1D1中,E、F分别是BB1、CD的中点,用向量方法:
(1)求证:D1F⊥平面ADE;
(2)求CB1与平面ADE所成角的正弦.

manfen5.com 满分网
在曲线C:y=x2(x≥0)上某一点A处作一切线l,l交x轴于manfen5.com 满分网
试求:(1)切点A的坐标;
(2)曲线C与切线l以及x轴所围的图形面积S
如果manfen5.com 满分网的展开式中各项二项式系数之和为128,求:
(1)n的值;
(2)展开式中manfen5.com 满分网的系数.
已知函数manfen5.com 满分网
(Ⅰ)证明manfen5.com 满分网
(Ⅱ)若数列{an}的通项公式为manfen5.com 满分网,求数列{an}的前m项和Sm
(Ⅲ)设数列{bn}满足:manfen5.com 满分网,设manfen5.com 满分网,若(Ⅱ)中的Sm满足对任意不小于2的正整数n,Sm<Tn恒成立,试求m的最大值
已知manfen5.com 满分网,其中a为常数.
(1)试判断函数f(x)的奇偶性;
(2)若(0,e]时,函数f(x)的最大值为-1,求实数a的值;
(3)在(2)的条件下,求证:manfen5.com 满分网
已知动⊙M经过点D(-2,0),且与圆C:x2+y2-4x=0外切.
(1)求点M的轨迹方程;
(2)记半径最小的圆为⊙M,直线l与⊙M相交于A,B两点,且⊙M上存在点P,使得manfen5.com 满分网(λ≠0)
①求⊙M的方程;
②求直线l的方程及相应的点P坐标.
已知a是实数,函数f(x)=2ax2+2x-3-a
(1)若f(x)≤0在R上恒成立,求a的取值范围.
(2)若函数y=f(x)在区间[-1,1]上恰有一个零点,求a的取值范围.
如图,已知:在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,PA=DA,E,F分别是AB与PD的中点.
(1)求证:PC⊥BD;
(2)求证:AF∥平面PEC;
(3)在线段BC上是否存在一点M,使AF⊥平面PDM?
若存在,指出点M的位置;若不存在,说明理由.

manfen5.com 满分网
已知函数manfen5.com 满分网
(1)求f(x)的定义域和值域;
(2)若manfen5.com 满分网的值.
(3)若曲线f(x)在点P(x,f(x))manfen5.com 满分网处的切线平行直线manfen5.com 满分网,求x的值.
共1028964条记录 当前(69791/102897) 首页 上一页 69786 69787 69788 69789 69790 69791 69792 69793 69794 69795 69796 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.