直线xcosα+y+2=0的倾斜角范围为 .
|
|
设函数f(x)=ln(x+a)+x2 (I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性; (II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于.
|
|
已知函数f(x)=x2,g(x)=x-1. (1)若∃x∈R使f(x)<b•g(x),求实数b的取值范围; (2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在[0,1]上单调递增,求实数m的取值范围.
|
|
已知函数f(x)=(ax2+bx+c)e-x的图象过点(0,2a),且在该点处切线的倾斜角为45° (1)用a表示b,c;(2)若f(x)在[2,+∞)上为单调递增函数,求a的取值范围.
|
|
已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围.
|
|
在△ABC中,. (Ⅰ)证明B=C: (Ⅱ)若cosA=-,求sin的值.
|
|
已知定义域为R的函数是奇函数. (Ⅰ)求a,b的值; (Ⅱ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.
|
|
设定义在R上的函数f(x)存在反函数,且对于任意x∈R恒有f(x+1)+f(-x-4)=2,则f-1(2011-x)+f-1(x-2009)= .
|
|
如图,图中的实线是由三段圆弧连接而成的一条封闭曲线C,各段弧所在的圆经过同一点P(点P不在C上)且半径相等.设第i段弧所对的圆心角为αi(i=1,2,3),则= .
|
|
设f(x)是定义在R上的奇函数,在(-∞,0)上有2xf′(2x)+f(2x)<0且f(-2)=0,则不等式xf(2x)<0的解集为 .
|
|