已知曲线C:f(x)=x2,C上的点A,An的横坐标分别为1和an(n∈N*),且a1=5,数列{xn}满足,设区间Dn=[1,an](an>1),当x∈Dn时,曲线C上存在点Pn(xn,f(xn)),使得点Pn处的切线与直线AAn平行. (1)证明:{logt(xn-1)+1}是等比数列; (2)当Dn+1⊊Dn对一切n∈N*恒成立时,求t的取值范围; (3)记数列{an}的前n项和为Sn,当时,试比较Sn与n+7的大小,并证明你的结论. |
|
已知曲线C:xy=1,过C上一点An(xn,yn)作一斜率为的直线交曲线C于另一点An+1(xn+1,yn+1),点列An(n=1,2,3,…)的横坐标构成数列{xn},其中. (1)求xn与xn+1的关系式; (2)求证:{}是等比数列; (3)求证:(-1)x1+(-1)2x2+(-1)3x3+…+(-1)nxn<1(n∈N,n≥1). |
|
某加工厂需要定期购买原材料,已知每公斤材料的价格为1.5元,每次购买原材料需支付运费600元、 每公斤原材料每天的保管费用为0.03元,该厂每天需要消耗原材料400公斤,每次购买的原材料当天即开始使用(即有400公斤不需要保管). (1)设该厂每x天购买一次原材料,试写出每次购买的原材料在x天内总的保管费用y1关于x的函数关系式; (2)求该厂多少天购买一次原材料才能使平均每天支付的总费用y最少,并求出这个最少(小)值. |
|
数列{xn}由下列条件确定:x1=a>0,xn+1=,n∈N. (Ⅰ)证明:对n≥2,总有xn≥; (Ⅱ)证明:对n≥2,总有xn≥xn+1; (Ⅲ)若数列{xn}的极限存在,且大于零,求xn的值. |
|
已知数列{an}的通项公式为,则a1Cn+a2Cn1+a3Cn2+…+an+1Cnn= . | |
函数的最大值是 . | |
已知,则从小到大依次为 . | |
已知a是第二象限的角,tan(π+2a)=-,则tana= . | |
等比数列{an}中,a1=2,a8=4,函数f(x)=x(x-a1)(x-a2)…(x-a8),则f′(0)=( ) A.26 B.29 C.212 D.215 |
|
函数y=x2(x>0)的图象在点(ak,ak2)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=( ) A.18 B.21 C.24 D.30 |
|