如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=kPA,点E、D分别是AC、PC的中点,EP⊥底面ABC. (1)求证:ED∥平面PAB; (2)求直线AB与平面PAC所成的角; (3)当k取何值时,E在平面PBC内的射影恰好为△PBC的重心? |
|
有2名老师,3名男生,4名女生照相留念,在下列情况中,各有多少种不同站法?(写出过程,最后结果用数字表示) (1)男生必须站在一起; (2)女生不能相邻; (3)若4名女生身高都不等,从左到右女生必须由高到矮的顺序站; (4)老师不站两端,男生必须站中间. |
|
已知展开式的前三项系数成等差数列. (1)求n的值; (2)求展开式中二项式系数最大的项; (3)求展开式中系数最大的项. |
|
如图,平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且,G是EF的中点. (1)求证:平面AGC⊥平面BGC; (2)求二面角B-AC-G的大小. |
|
从4名文科教师和3名理科教师中任选3人担任班主任.(写出过程,最后结果用分数表示) (1)求所选3人都是理科教师的概率; (2)求所选3人中恰有1名理科教师的概率; (3)求所选3人中至少有1名理科教师的概率. |
|
有一档娱乐节目,从五个家庭(每个家庭都是一家三口)中任意抽出3人出来临时表演节目,则抽出来的恰好是来自不同家庭组成的“全家福”(即指有爸爸、妈妈和宝宝)的概率是 .(用分数作答) | |
从0,1,2,3,4,5,6七个数字中,选出2个偶数和1个奇数,组成无重复数字的三位数,能被5整除的三位数有 个.(用数字作答) | |
若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60°的菱形,则该棱柱的体积等于 . | |
已知(1-2x)7=a+a1x+a2x2+…+a7x7,那么a1+a2+…+a7= . | |
如图,已知点E是棱长为2的正方体AC1的棱AA1的中点,则点A到平面EBD的距离等于 . |
|