已知数列,则a4=( ) A. B. C. D. |
|
已知a+b>0,b<0,则a,b,-a,-b的大小关系为( ) A.-a<-b<b<a B.b<-a<-b<a C.-a<b<-b<a D.-b<-a<b<a |
|
已知抛物线C的顶点在原点,焦点为.(1)求抛物线C的方程; (2)已知直线 与抛物线C交于A、B 两点,且|FA|=2|FB|,求k 的值; (3)设点P 是抛物线C上的动点,点R、N 在y 轴上,圆(x-1)2+y2=1 内切于△PRN,求△PRN 的面积最小值. |
|
已知函数f(x)=x3-3ax2-9a2x+a3. (1)设a=1,求函数f(x)的极值; (2)若,且当x∈[1,4a]时,|f′(x)|≤12a恒成立,试确定a的取值范围. |
|
如图,四棱锥P-ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上. (1)求证:平面AEC⊥平面PDB; (2)当且E为PB的中点时,求AE与平面PDB所成的角的大小. |
|
设{an}为等比数列,且其满足:Sn=2n+a. (1)求a的值及数列{an}的通项公式; (2)数列{bn}的通项公式为,求数列{bn}的前n项和Tn. |
|
设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,a=2bsinA (Ⅰ)求B的大小; (Ⅱ)若,c=5,求b. |
|
在平面几何里,有:“若△ABC的三边长分别为a,b,c内切圆半径为r,则三角形面积为S△ABC=(a+b+c)r”,拓展到空间,类比上述结论,“若四面体A-ACD的四个面的面积分别为S1,S2,S3,S4内切球的半径为r,则四面体的体积为 . | |
某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7000万元,则x的最小值 . | |
已知集合A={1,2,3},B={7,8},现从A,B中各取一个数字,组成无重复数字的二位数,在这些二位数中,任取一个数,则恰为奇数的概率为 . | |