则f(f(2))的值为 . | |
设a∈R,若函数y=eax+3x,x∈R有大于零的极值点,则( ) A.a>-3 B.a<-3 C.a>- D.a<- |
|
设f(x)=sinx,f1(x)=f′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x),n∈N,则f2005(x)=( ) A.sin B.-sin C.cos D.-cos |
|
在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图). 试问三角形数的一般表达式为( ) A.n B.n(n+1) C.n2-1 D.n(n-1) |
|
若抛物线y2=2px的焦点与椭圆的右焦点重合,则p的值为( ) A.-2 B.2 C.-4 D.4 |
|
汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( ) A. B. C. D. |
|
y=(sinx-cosx)2-1是( ) A.最小正周期为2π的偶像函数 B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为π的奇函数 |
|
复数(i是虚数单位)在复平面上对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 |
|
已知集合M={-1,1},,则M∩N=( ) A.{-1,1} B.{-1} C.{0} D.{-1,0} |
|
已知数列{an}的首项,,n=1,2,…. (Ⅰ)求{an}的通项公式; (Ⅱ)证明:对任意的x>0,,n=1,2,…; (Ⅲ)证明:. |
|