若复数lg(m2-2m-2)+(m2+3m+2)i是纯虚数,则实数m等于( ) A.-1 B.3 C.-1或3 D.1或3 |
|
已知f(x)在R上是偶函数,且f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=( ) A.2 B.-2 C.98 D.-98 |
|
已知函数f(x)=(2a-1)x+b在R上是减函数,则a的取值范围为( ) A. B. C. D. |
|
已知集合A={(x,y)|x+y=0,x,y∈R},B={(x,y)|x-y=0,x,y∈R},则集合A∩B的元素个数是( ) A.0 B.1 C.2 D.3 |
|
已知等差数列{an}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项. (1)求数列{an}的通项公式; (2)设bn=,是否存在最大的整数t,使得对任意的n均有Sn>总成立?若存在,求出t;若不存在,请说明理由. |
|
设函数f(x)=ax3+bx2-3a2x+1(a,b∈R)在x=x1,x=x2处取得极值,且|x1-x2|=2. (Ⅰ)若a=1,求b的值,并求f(x)的单调区间; (Ⅱ)若a>0,求b的取值范围. |
|
已知函数f(x)对任意实数x,y均有f(x)+f(y)=2f,f(0)≠0,且存在非零常数c,使f(c)=0. (1)求f(0)的值; (2)判断f(x)的奇偶性并证明; (3)求证f(x)是周期函数,并求出f(x)的一个周期. |
|
如图,在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,且PA=AB=2,E、F分别是AB与PD的中点. (Ⅰ)求证:PC⊥BD; (Ⅱ)求证:AF∥平面PEC; (Ⅲ)求二面角P-EC-D的大小. |
|
已知函数f(x)=-x3+3x2+9x+a. (I)求f(x)的单调递减区间; (Ⅱ)若f(x)在区间[-2,2]上的最大值为20,求它在该区间上的最小值. |
|
已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1. (1)求k的值及通项公式an. (2)求Sn. |
|