等差数列{an}的前n项和为Sn,若a2+a6+a10为一个确定的常数,则下列各个和中,也为确定的常数的是( ) A.S6 B.S11 C.S12 D.S13 |
|
如果命题“¬(p或q)”为假命题,则( ) A.p、q均为真命题 B.p、q均为假命题 C.p、q中至少有一个为真命题 D.p、q中至多有一个为真命题 |
|
记数列{an}的前n项和为Sn,且Sn=2(an-1),则a2( ) A.4 B.2 C.1 D.-2 |
|
若函数f(x)的反函数f-1(x)=1+x2(x<0),则f(2)=( ) A.1 B.-1 C.1和-1 D.5 |
|
已知等差数列{an}的首项a1=1,公差d>0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项. (1)求数列{an}的通项公式; (2)设bn=,是否存在最大的整数t,使得对任意的n均有Sn>总成立?若存在,求出t;若不存在,请说明理由. |
|
设函数. (1)若f(x)在(0,1]上是增函数,求a的取值范围; (2)求f(x)在(0,1]上的最大值. |
|
已知函数f(x)对任意实数x,y均有f(x)+f(y)=2f,f(0)≠0,且存在非零常数c,使f(c)=0. (1)求f(0)的值; (2)判断f(x)的奇偶性并证明; (3)求证f(x)是周期函数,并求出f(x)的一个周期. |
|
如图,在菱形ABCD中,∠DAB=60°,PA⊥底面ABCD,且PA=AB=2,E、F分别是AB与PD的中点. (Ⅰ)求证:PC⊥BD; (Ⅱ)求证:AF∥平面PEC; (Ⅲ)求二面角P-EC-D的大小. |
|
设函数f(x)=ax-(a+1)ln(x+1),其中a≥-1,求f(x)的单调区间. |
|
已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1. (1)求k的值及通项公式an. (2)求Sn. |
|