相关试题
当前位置:首页 > 高中数学试题
函数y=sin(2x2+x)导数是( )
A.y′=cos(2x2+x)
B.y′=2xsin(2x2+x)
C.y′=(4x+1)cos(2x2+x)
D.y′=4cos(2x2+x)
已知函数f(x)=xlnx,则( )
A.在(0,+∞)上递增
B.在(0,+∞)上递减
C.在manfen5.com 满分网上递增
D.在manfen5.com 满分网上递减
分析法证明不等式的推理过程是寻求使不等式成立的( )
A.必要条件
B.充分条件
C.充要条件
D.必要条件或充分条件
如图,已知椭圆C:manfen5.com 满分网的长轴AB长为4,离心率manfen5.com 满分网,O为坐标原点,过B的直线l与x轴垂直.P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连接AQ延长交直线l于点M,N为MB的中点.
(1)求椭圆C的方程;
(2)证明Q点在以AB为直径的圆O上;
(3)试判断直线QN与圆O的位置关系.

manfen5.com 满分网
manfen5.com 满分网已知定点F(0,1)和直线l1:y=-1,过定点F与直线l1相切的动圆圆心为点C.
(1)求动点C的轨迹方程;
(2)过点F在直线l2交轨迹于两点P、Q,交直线l1于点R,求manfen5.com 满分网的最小值.
设椭圆manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的左焦点为F1(-2,0),左准线l1与x轴交于点N(-3,0),过点N且倾斜角为30°的直线l交椭圆于A、B两点.
(1)求直线l和椭圆的方程;
(2)求证:点F1(-2,0)在以线段AB为直径的圆上;
(3)在直线l上有两个不重合的动点C、D,以CD为直径且过点F1的所有圆中,求面积最小的圆的半径长.
已知动点P的轨迹为曲线C,且动点P到两个定点F1(-1,0),F2(1,0)的距离manfen5.com 满分网的等差中项为manfen5.com 满分网
(1)求曲线C的方程;
(2)直线l过圆x2+y2+4y=0的圆心Q与曲线C交于M,N两点,且manfen5.com 满分网为坐标原点),求直线l的方程;
(3)设点manfen5.com 满分网,点P为曲线C上任意一点,求manfen5.com 满分网的最小值,并求取得最小值时点P的坐标.
如图,已知直线l与抛物线x2=4y相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).
(1)若动点M满足manfen5.com 满分网=0,求动点M的轨迹Q;
(2) F1,F2是轨迹Q的左、右焦点,过F1作直线l(不与x轴重合),l与轨迹Q相交于C,D,并与圆x2+y2=3相交于E,F.当manfen5.com 满分网,且λ∈[manfen5.com 满分网,1]时,求△F2CD的面积S的取值范围.

manfen5.com 满分网
已知抛物线C1的方程为y=ax2(a>0),圆C2的方程为x2+(y+1)2=5,直线l1:y=2x+m(m<0)是C1、C2的公切线.F是C1的焦点.
(1)求m与a的值;
(2)设A是C1上的一动点,以A为切点的C1的切线l交y轴于点B,设manfen5.com 满分网,证明:点M在一定直线上.

manfen5.com 满分网
已知椭圆C1的中心在坐标原点O,焦点在x轴上,离心率为e=manfen5.com 满分网,点P为椭圆上一动点,点F1、F2分别为椭圆的左、右焦点,且△PF1F2面积的最大值为manfen5.com 满分网
(1)求椭圆C1的方程;
(2)设椭圆短轴的上端点为A,点M为动点,且manfen5.com 满分网|manfen5.com 满分网|2manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网成等差数列,求动点M的轨迹C2的方程.
共1028964条记录 当前(71875/102897) 首页 上一页 71870 71871 71872 71873 71874 71875 71876 71877 71878 71879 71880 下一页 末页 转到 GO
Copyright @ 2019 满分5 学习网 ManFen5.COM. All Rights Reserved.