已知a>0,函数f(x)=ln(2-x)+ax. (1)设曲线y=f(x)在点(1,f(1))处的切线为l,若l与圆(x+1)2+y2=1相切,求a的值; (2)求函数f(x)的单调区间; (3)求函数f(x)在[0,1]上的最小值和最大值. |
|
已知定点A(-2,0),动点B是圆F:(x-2)2+y2=64(F为圆心)上一点,线段AB的垂直平分线交BF于P. (I)求动点P的轨迹方程; (II)是否存在过点E(0,-4)的直线l交P点的轨迹于点R,T,且满足(O为原点).若存在,求直线l的方程;若不存在,请说明理由. |
|
数列{an}是首项a1=4的等比数列,且S3,S2,S4成等差数列, (1)求数列{an}的通项公式; (2)若bn=log2|an|,设Tn为数列的前n项和,若Tn≤λbn+1对一切n∈N*恒成立,求实数λ的最小值. |
|
如图,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF∥平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小. |
|
袋中装有大小相等的3个白球,2个红球和n个黑球,现从中任取2个球,每取得一个白球得1分,每取得一个红球得2分,每取得一个黑球0分,用ξ表示所得分数,已知得0分的概率为. (Ⅰ)袋中黑球的个数n; (2)ξ的概率分布列及数学期望Eξ. (3)求在取得两个球中有一个是红球的条件下,求另一个是黑球的概率. |
|
已知函数的最小正周期为3π,当x∈[0,π]时,函数f(x)的最小值为0. (1)求函数f(x)的表达式; (2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A-C),求sinA的值. |
|
如图,对于大于1的自然数m的n次幂可用奇数进行如图所示的“分裂”,仿此,记53的“分裂”中的最小数为a,而52的“分裂”中最大的数是b,则a+b= . |
|
身穿红、黄两种颜色衣服的各有两人,身穿蓝颜色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有 种. | |
四面体ABCD的外接球球心在CD上,且CD=2,AB=,则外接球面上两点A,B间的球面距离是 . | |
两曲线x-y=0,y=x2-2x所围成的图形的面积是 . | |