学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为 的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人,则n的值为( ) A.100 B.1000 C.90 D.900 |
|
设点P(+,1)(t>0),则||(O为坐标原点)的最小值是( ) A.3 B.5 C. D. |
|
已知直线m⊥平面α,直线n⊂平面β,下面有三个命题: ①α∥β⇒m⊥n; ②α⊥β⇒m∥n; ③m∥n⇒α⊥β; 则真命题的个数为( ) A.0 B.1 C.2 D.3 |
|
已知等差数列{an}的公差为d(d≠0),且a3+a6+a10+a13=32,若am=8,则m是( ) A.8 B.6 C.4 D.2 |
|
已知集合A⊂{1,2,3},且A的元素中至少含有一个奇数,则满足条件的集合A共有( ) A.6个 B.5个 C.4个 D.3个 |
|
已知函数f(x)=log3是f(x)图象上的两点,横坐标为的点P满足2(O为坐标原点). (Ⅰ)求证:y1+y2为定值; (Ⅱ)若,其中n∈N*,且n≥2,求Sn; (Ⅲ)已知an=,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围. |
|
已知函数f(x)=x+b的图象与函数g(x)=x2+3x+2的图象相切,记F(x)=f(x)g(x). (1)求实数b的值及函数F(x)的极值; (2)若关于x的方程F(x)=k恰有三个不等的实数根,求实数k的取值范围. |
|
设椭圆的左,右两个焦点分别为F1,F2,短轴的上端点为B,短轴上的两个三等分点为P,Q,且F1PF2Q为正方形. (1)求椭圆的离心率; (2)若过点B作此正方形的外接圆的切线在x轴上的一个截距为,求此椭圆方程. |
|
如图,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF=90°,BE∥CF,CE⊥EF,AD=, EF=2. (1)求异面直线AD与EF所成的角; (2)当二面角D-EF-C的大小为45°时,求二面角A-EC-B的正切值. |
|
在一次数学考试中,共有10道选择题,每题均有四个选项,其中有且只有一个选项是正确的,评分标准规定:“每道题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有6道题是正确的,其余题目中:有两道题可判断两个选项是错误的,有一道可判断一个选项是错误的,还有一道因不理解题意只好乱猜,请求出该考生: (1)得50分的概率;(2)比较得35分和40分的概率的大小.并说明他最有可能得到的分数. |
|