在复平面内,复数对应的点到直线y=x+1的距离是( ) A. B.2 C. D. |
|
已知集合M是满足下列性质的函数f(x)的全体:存在非零常数k,对定义域中的任意x,等式f(kx)=+f(x)恒成立. (1)判断一次函数f(x)=ax+b(a≠0)是否属于集合M; (2)证明函数f(x)=log2x属于集合M,并找出一个常数k; (3)已知函数f(x)=logax( a>1)与y=x的图象有公共点,证明f(x)=logax∈M. |
|
设数列{an}的前n项和为Sn,且满足Sn=2-an,n=1,2,3,…. (1)求数列{an}的通项公式; (2)若数列{bn}满足b1=1,且bn+1=bn+an,求数列{bn}的通项公式; (3)设cn=n (3-bn),求数列{cn}的前n项和为Tn. |
|
已知⊙C过点P(1,1),且与⊙M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称. (Ⅰ)求⊙C的方程; (Ⅱ)设Q为⊙C上的一个动点,求的最小值; (Ⅲ)过点P作两条相异直线分别与⊙C相交于A,B,且直线PA和直线PB的倾斜角互补,O为坐标原点,试判断直线OP和AB是否平行?请说明理由. |
|
一气球以V(m/s)的速度由地面上升,10分钟后由观察点P测得气球在P的正东方向S处,仰角为45°;再过10分钟后,测得气球在P的东偏北30°方向T处,其仰角为60°(如图,其中Q、R分别为气球在S、T处时的正投影).求风向和风速(风速用V表示). |
|
如图,在四棱锥P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DC∥AB,∠BAD=90°,且AB=2AD=2DC=2PD=4(单位:cm),E为PA的中点. (1)证明:DE∥平面PBC; (2)证明:DE⊥平面PAB. |
|
已知函数f(x)=Asin(ωx+φ),x∈R(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为. (Ⅰ)求f(x)的解析式; (Ⅱ)当,求f(x)的值域. |
|
方程x2+-1=0的解可视为函数y=x+的图象与函数y=的图象交点的横坐标.若x4+ax-9=0的各个实根x1,x2,…,xk(k≤4)所对应的点(i=1,2,…,k)均在直线y=x的同侧,则实数a的取值范围是 . | |
等差数列{an}的公差为d,关于x的不等式++c≥0的解集为[0,22],则使数列{an}的前n项和Sn最大的正整数n的值是 . | |
设周期函数f(x)是定义在R上的奇函数,若f(x)的最小正周期为3,且满足f(1)>-2,f(2)=m-,则m的取值范围是 . | |