在某校教师趣味投篮比赛中,比赛规则是:每场投6个球,至少投进4个球且最后2个球都投进者获奖;否则不获奖.已知教师甲投进每个球的概率都是. (Ⅰ)记教师甲在每场的6次投球中投进球的个数为X,求X的分布列及数学期望; (Ⅱ)求教师甲在一场比赛中获奖的概率; (Ⅲ)已知教师乙在某场比赛中,6个球中恰好投进了4个球,求教师乙在这场比赛中获奖的概率;教师乙在这场比赛中获奖的概率与教师甲在一场比赛中获奖的概率相等吗? |
|
已知各项都不相等的等差数列{an}的前六项和为60,且a6为a1和a21的等比中项. (1)求数列{an}的通项公式 (2)若数列{bn}满足bn+1-bn=an(n∈N*),且b1=3,求数列的前n项Tn. |
|
在△ABC中,a,b,c分别是角A、B、C的对边,=(b,2a-c),=(cosB,cosC),且∥ (1)求角B的大小; (2)设f(x)=cos(ωx-)+sinx(ω>0),且f(x)的最小正周期为π,求f(x)在区间[0,]上的最大值和最小值. |
|
一个三角形数阵如下: 1 222 232425 26272829 … 按照以上排列的规律,第n 行(n≥3)从左向右的第3个数为 . |
|
对某学校n名学生的体重进行统计,得到频率分布直方图如图所示,则体重在75kg以上的学生人数为64人,则n= . | |
已知a,b,c成等差数列,则直线ax-by+c=0被曲线x2+y2-2x-2y=0截得的弦长的最小值为 . | |
不等式|x-1|-x<1的解集是 . | |
设x、y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为6,则的最小值为( ) A. B.3 C.2 D.4 |
|
已知抛物线y2=2px(p>0)的焦点F为双曲线的一个焦点,经过两曲线交点的直线恰好过点F,则该双曲线的离心率为( ) A. B. C. D. |
|
定义在区间[0,a]上的函数f(x)的图象如图所示,记以A(0,f(0)),B(a,f(a)),C(x,f(x))为顶点的三角形的面积为S(x),则函数S(x)的导函数S′(x)的图象大致是( ) A. B. C. D. |
|