如果复数(m2+i)(1+mi)是实数,则实数m= . | |
集合A={3,2a},B={a,b},若A∩B={2},则A∪B= . | |
的定义域是 | |
已知,其中e是无理数,a∈R. (1)若a=1时,f(x)的单调区间、极值; (2)求证:在(1)的条件下,; (3)是否存在实数a,使f(x)的最小值是-1,若存在,求出a的值;若不存在,说明理由. |
|
已知△OFQ的面积为,且. (1)当时,求向量与的夹角θ的取值范围; (2)设,若以中心O为坐标原点,焦点F在x非负半轴上的双曲线经过点Q,当取得最小值时,求此双曲线的方程. |
|
设数列{an}前和n为Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m为常数,m≠-3,且m≠0. (1)求证:{an}是等比数列; (2)若数列{an}的公比q=f(m)=且数列{bn}中,,求bn的表达式. |
|
已知,如图:四边形ABCD为矩形,PA⊥平面ABCD,M、N分别是AB、PC的中点, (1)求证:直线MN⊥直线AB; (2)若平面PDC与平面ABCD所成的二面角大小为θ,能否确定θ使直线MN是异面直线AB与PC的公垂线,若能确定,求出θ的值,若不能确定,说明理由. |
|
某工厂生产甲、乙两种产品,每种产品都是经过第一和第二工序加工而成,两道工序的加工结果相互独立,每道工序加工结果均有A,B两个等级,对每种产品,两道工序的加工结果都为A级时,产品为一等品,其余均为二等品. (1)已知甲、乙两种产品第一道工序的加工结果为A级的概率如表一所示,分别求生产出的甲、乙产品为一等级的概率P甲,P乙; (2)现要求生产甲,乙两种产品各100个和200个,求这批产品中甲,乙分别有多少个一等品; (3)已知一件产品的利润如表二所示,用ξ、η分别表示一件甲、乙产品的利润,在(1)的条件下,求ξ、η的分布列及Eξ、Eη. |
|
已知函数 (Ⅰ)求函数f(x)的最小正周期; (Ⅱ)若时,求f(x)的单调递减区间. |
|
如图,是一个由三根细铁杆PA、PB、PC组成的支架,三根杆的两两夹角都是60°,一个半径为1的球放在支架内,使杆与球相切,则球心到点P的距离是( ) A. B. C.2 D. |
|